cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A199457 Decimal expansion of greatest x satisfying x^2-2*x*sin(x)=-3*cos(x).

Original entry on oeis.org

2, 3, 3, 3, 8, 5, 4, 8, 5, 0, 2, 8, 5, 2, 9, 2, 1, 2, 8, 3, 3, 0, 3, 7, 1, 0, 9, 9, 3, 1, 7, 4, 8, 0, 5, 3, 9, 2, 4, 4, 2, 0, 9, 2, 5, 7, 3, 8, 2, 2, 0, 6, 5, 2, 3, 3, 3, 0, 4, 2, 7, 0, 8, 2, 5, 6, 1, 6, 1, 8, 9, 6, 9, 1, 7, 1, 8, 1, 0, 8, 0, 6, 6, 3, 5, 9, 9, 8, 3, 8, 0, 0, 8, 5, 0, 5, 9, 4, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.333854850285292128330371099317480539244209...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -2; c = -3;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.33, 2.34}, WorkingPrecision -> 110]
    RealDigits[r]  (*   A199457  greatest root *)

A199458 Decimal expansion of greatest x satisfying x^2-2*x*sin(x)=-2*cos(x).

Original entry on oeis.org

2, 1, 7, 0, 8, 5, 3, 3, 9, 9, 9, 4, 4, 2, 6, 8, 4, 6, 6, 1, 8, 2, 9, 6, 7, 7, 8, 9, 6, 2, 4, 5, 3, 8, 9, 9, 3, 1, 8, 7, 7, 3, 3, 2, 7, 6, 9, 0, 3, 4, 8, 5, 9, 1, 8, 0, 8, 0, 1, 0, 9, 5, 9, 7, 0, 0, 1, 5, 1, 5, 5, 8, 6, 4, 8, 0, 9, 7, 7, 9, 1, 2, 2, 0, 6, 3, 3, 3, 8, 1, 2, 6, 1, 1, 7, 3, 3, 6, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.17085339994426846618296778962453899318773...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -2; c = -2;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.17, 2.18}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199458 greatest root *)

A199459 Decimal expansion of greatest x satisfying x^2-2*x*sin(x)=-cos(x).

Original entry on oeis.org

2, 0, 1, 7, 7, 4, 6, 7, 6, 0, 9, 2, 2, 1, 1, 8, 4, 5, 3, 5, 4, 7, 3, 0, 6, 4, 1, 9, 4, 0, 3, 2, 6, 0, 3, 7, 4, 4, 1, 3, 2, 6, 5, 9, 4, 0, 2, 6, 5, 5, 5, 1, 1, 3, 6, 9, 8, 7, 5, 6, 6, 2, 7, 3, 2, 5, 2, 1, 2, 0, 5, 9, 7, 9, 4, 3, 2, 3, 0, 1, 0, 7, 9, 6, 8, 1, 4, 3, 8, 5, 4, 2, 4, 7, 5, 5, 7, 4, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 06 2011

Keywords

Comments

See A199370 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.01774676092211845354730641940326037441326594026555...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -2; c = -1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.01, 2.02}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199459 greatest root *)

A199461 Decimal expansion of x>0 satisfying x^2-2*x*sin(x)=cos(x).

Original entry on oeis.org

1, 8, 1, 1, 1, 1, 0, 8, 1, 4, 2, 4, 8, 3, 1, 9, 7, 6, 2, 7, 9, 6, 5, 4, 9, 7, 0, 9, 7, 5, 6, 7, 2, 9, 6, 1, 7, 6, 9, 1, 0, 3, 1, 2, 5, 8, 1, 3, 5, 3, 4, 3, 1, 2, 9, 4, 9, 2, 7, 3, 5, 6, 4, 4, 6, 3, 4, 5, 4, 9, 8, 0, 6, 3, 7, 3, 5, 5, 8, 2, 7, 5, 1, 0, 0, 2, 7, 3, 9, 7, 7, 6, 1, 4, 2, 6, 9, 6, 5
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.811110814248319762796549709756729617691031258...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -2; c = 1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.81, 1.82}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199461 *)

A199462 Decimal expansion of x>0 satisfying x^2-2*x*sin(x)=2*cos(x).

Original entry on oeis.org

1, 7, 5, 6, 0, 2, 6, 6, 9, 2, 4, 5, 9, 7, 0, 3, 4, 3, 2, 9, 4, 2, 5, 3, 3, 4, 8, 9, 2, 6, 4, 2, 3, 9, 2, 3, 5, 8, 1, 0, 8, 1, 2, 7, 8, 0, 7, 1, 8, 9, 9, 0, 8, 7, 2, 7, 0, 9, 2, 3, 9, 0, 3, 3, 7, 1, 8, 2, 4, 9, 9, 5, 0, 7, 4, 5, 3, 3, 0, 2, 3, 0, 8, 4, 1, 0, 3, 0, 8, 4, 9, 5, 1, 0, 5, 1, 6, 9, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.7560266924597034329425334892642392358108127...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -2; c = 2;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.75, 1.76}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199462 *)

A199463 Decimal expansion of x>0 satisfying x^2-2*x*sin(x)=3*cos(x).

Original entry on oeis.org

1, 7, 1, 9, 4, 7, 9, 3, 6, 6, 6, 5, 1, 9, 3, 4, 7, 2, 7, 4, 8, 4, 2, 9, 8, 6, 8, 3, 7, 6, 4, 3, 2, 6, 5, 8, 7, 2, 0, 0, 7, 1, 1, 8, 4, 3, 8, 3, 2, 9, 8, 2, 1, 6, 7, 8, 0, 0, 7, 0, 5, 4, 3, 4, 0, 4, 3, 2, 7, 8, 6, 5, 9, 7, 4, 2, 4, 2, 8, 7, 1, 4, 9, 9, 3, 5, 7, 8, 6, 1, 4, 1, 7, 4, 0, 1, 4, 3, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.719479366651934727484298683764326587200711843...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -2; c = 3;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.71, 1.72}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199463 *)

A199464 Decimal expansion of greatest x satisfying x^2-3*x*sin(x)=-3*cos(x).

Original entry on oeis.org

1, 0, 2, 0, 6, 5, 1, 9, 4, 4, 5, 5, 0, 7, 1, 4, 2, 8, 1, 7, 9, 2, 0, 8, 0, 1, 0, 9, 8, 5, 8, 2, 5, 7, 4, 0, 9, 1, 6, 7, 9, 8, 4, 7, 5, 0, 6, 4, 8, 2, 8, 7, 3, 4, 9, 6, 3, 7, 4, 1, 3, 8, 6, 4, 8, 3, 0, 9, 7, 0, 7, 6, 4, 4, 0, 3, 8, 5, 2, 9, 0, 1, 1, 9, 7, 1, 9, 6, 8, 8, 0, 4, 5, 5, 8, 9, 6, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.02065194455071428179208010985825740916...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -3; c = -3;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.71, 1.72}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199464 greatest root *)

A199465 Decimal expansion of greatest x satisfying x^2-3*x*sin(x)=-2*cos(x).

Original entry on oeis.org

2, 4, 7, 9, 8, 1, 6, 1, 6, 7, 5, 8, 0, 7, 5, 2, 6, 9, 9, 1, 5, 6, 8, 6, 7, 4, 4, 6, 0, 3, 4, 3, 4, 4, 2, 9, 3, 2, 3, 8, 5, 7, 1, 2, 5, 0, 4, 0, 5, 9, 8, 1, 6, 9, 3, 3, 8, 7, 5, 4, 6, 4, 0, 9, 5, 3, 5, 6, 6, 7, 0, 9, 3, 5, 5, 4, 0, 8, 7, 6, 2, 9, 5, 8, 9, 3, 1, 1, 9, 0, 5, 5, 3, 8, 6, 2, 9, 0, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.4798161675807526991568674460343442932...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -3; c = -2;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.47, 2.48}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199465 greatest root *)

A199466 Decimal expansion of greatest x satisfying x^2-3*x*sin(x)=-cos(x).

Original entry on oeis.org

2, 3, 7, 8, 1, 0, 9, 6, 9, 6, 1, 2, 0, 3, 2, 4, 8, 0, 6, 8, 2, 3, 0, 8, 7, 8, 4, 9, 8, 2, 6, 0, 8, 6, 3, 1, 8, 0, 9, 4, 7, 1, 5, 7, 4, 2, 2, 8, 8, 5, 5, 9, 6, 3, 5, 0, 6, 8, 0, 9, 8, 3, 4, 7, 7, 9, 1, 8, 0, 0, 4, 7, 7, 4, 9, 7, 1, 5, 9, 3, 6, 8, 2, 2, 3, 7, 3, 3, 3, 4, 2, 5, 1, 4, 1, 2, 0, 0, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.3781096961203248068230878498260863180947157422...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -3; c = -1;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.37, 2.38}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199466 greatest root *)

A199467 Decimal expansion of greatest x satisfying x=3*sin(x).

Original entry on oeis.org

2, 2, 7, 8, 8, 6, 2, 6, 6, 0, 0, 7, 5, 8, 2, 8, 3, 1, 2, 6, 9, 9, 9, 5, 1, 1, 0, 4, 5, 6, 1, 8, 8, 8, 6, 2, 8, 8, 1, 8, 2, 7, 4, 7, 4, 0, 7, 3, 9, 7, 7, 6, 5, 1, 6, 5, 2, 5, 5, 8, 5, 5, 2, 9, 2, 4, 8, 3, 4, 4, 4, 6, 4, 7, 0, 1, 8, 3, 9, 1, 8, 6, 2, 5, 6, 7, 8, 1, 3, 4, 0, 5, 8, 0, 1, 4, 6, 5, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2011

Keywords

Comments

See A199429 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.2788626600758283126999511045618886288...
		

Crossrefs

Cf. A199429.

Programs

  • Mathematica
    a = 1; b = -3; c = 0;
    f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.27, 2.28}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199467 *)
Previous Showing 31-40 of 56 results. Next