cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 98 results. Next

A199731 Decimal expansion of least x satisfying x^2-4*x*cos(x)=4*sin(x).

Original entry on oeis.org

3, 8, 0, 2, 8, 4, 2, 7, 0, 0, 6, 2, 3, 5, 9, 1, 7, 1, 6, 4, 0, 4, 3, 7, 9, 7, 5, 1, 8, 8, 5, 5, 4, 9, 8, 3, 5, 2, 0, 1, 6, 2, 3, 0, 2, 9, 5, 9, 6, 2, 4, 3, 7, 0, 5, 5, 8, 8, 6, 2, 4, 0, 5, 4, 1, 0, 7, 3, 1, 2, 1, 0, 7, 7, 9, 5, 1, 0, 7, 4, 3, 9, 3, 3, 6, 0, 5, 3, 6, 4, 5, 4, 5, 6, 8, 5, 4, 5, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -3.80284270062359171640437975188554983520...
greatest:  1.71776170155914673794654693768308401...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -4; c = 4;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2 Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.9, -3.8}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199731 least of 4 roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.71, 1.72}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199732 greatest of 4 roots *)

A199732 Decimal expansion of greatest x satisfying x^2-4*x*cos(x)=4*sin(x).

Original entry on oeis.org

1, 7, 1, 7, 7, 6, 1, 7, 0, 1, 5, 5, 9, 1, 4, 6, 7, 3, 7, 9, 4, 6, 5, 4, 6, 9, 3, 7, 6, 8, 3, 0, 8, 4, 0, 1, 0, 8, 3, 6, 6, 9, 6, 2, 7, 3, 2, 6, 4, 6, 5, 7, 0, 5, 3, 1, 8, 2, 8, 1, 3, 5, 5, 1, 1, 2, 3, 7, 5, 0, 4, 2, 0, 1, 0, 9, 6, 6, 9, 3, 3, 1, 2, 8, 9, 7, 5, 5, 1, 6, 9, 0, 7, 5, 6, 1, 0, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -3.80284270062359171640437975188554983520...
greatest:  1.71776170155914673794654693768308401...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -4; c = 4;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2 Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.9, -3.8}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199731 least of 4 roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.71, 1.72}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199732 greatest of 4 roots *)

A199733 Decimal expansion of least x satisfying x^2-4*x*cos(x)=3*sin(x).

Original entry on oeis.org

3, 7, 4, 6, 1, 6, 8, 5, 6, 5, 5, 2, 8, 2, 2, 1, 3, 4, 0, 6, 8, 7, 0, 1, 3, 5, 6, 0, 5, 2, 7, 5, 9, 6, 9, 7, 8, 8, 5, 6, 5, 4, 6, 3, 8, 9, 1, 5, 6, 5, 1, 1, 2, 9, 8, 1, 8, 6, 5, 6, 4, 7, 4, 8, 5, 8, 6, 8, 4, 6, 3, 2, 8, 1, 8, 3, 2, 6, 3, 6, 7, 2, 5, 2, 8, 2, 4, 8, 1, 0, 6, 7, 7, 2, 4, 4, 1, 6, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -3.746168565528221340687013560527596978856...
greatest:  1.625278383378448643933003226246836106...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -4; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.8, -3.7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199733 least root *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199734 greatest root *)

A199734 Decimal expansion of greatest x satisfying x^2-4*x*cos(x)=3*sin(x).

Original entry on oeis.org

1, 6, 2, 5, 2, 7, 8, 3, 8, 3, 3, 7, 8, 4, 4, 8, 6, 4, 3, 9, 3, 3, 0, 0, 3, 2, 2, 6, 2, 4, 6, 8, 3, 6, 1, 0, 6, 0, 8, 6, 5, 5, 9, 6, 7, 1, 6, 5, 8, 5, 7, 2, 8, 1, 5, 4, 4, 7, 5, 9, 5, 5, 8, 3, 7, 9, 3, 6, 1, 2, 3, 7, 9, 4, 4, 8, 6, 8, 8, 1, 9, 7, 7, 8, 7, 3, 1, 5, 2, 5, 4, 9, 3, 4, 0, 9, 1, 8, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -3.746168565528221340687013560527596978856...
greatest:  1.625278383378448643933003226246836106...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -4; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.8, -3.7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199733 least root *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199734 greatest root *)

A199735 Decimal expansion of least x satisfying x^2-4*x*cos(x)=2*sin(x).

Original entry on oeis.org

3, 6, 9, 2, 2, 1, 4, 2, 4, 5, 4, 3, 5, 8, 4, 0, 4, 6, 1, 1, 2, 1, 0, 1, 6, 8, 2, 9, 3, 7, 2, 6, 8, 7, 5, 3, 8, 5, 0, 8, 6, 7, 2, 6, 7, 2, 8, 8, 7, 7, 5, 4, 8, 6, 6, 1, 1, 3, 9, 7, 7, 6, 9, 2, 3, 2, 9, 4, 3, 2, 8, 2, 7, 9, 0, 8, 1, 8, 4, 0, 2, 9, 2, 5, 4, 9, 9, 1, 9, 7, 2, 2, 4, 2, 6, 7, 1, 7, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -3.69221424543584046112101682937268753850...
greatest:  1.519514926470401221585705162098148990...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -4; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.7, -3.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199735 least root *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199736 greatest root *)

A199736 Decimal expansion of greatest x satisfying x^2-4*x*cos(x)=2*sin(x).

Original entry on oeis.org

1, 5, 1, 9, 5, 1, 4, 9, 2, 6, 4, 7, 0, 4, 0, 1, 2, 2, 1, 5, 8, 5, 7, 0, 5, 1, 6, 2, 0, 9, 8, 1, 4, 8, 9, 9, 0, 5, 5, 6, 3, 3, 9, 8, 8, 6, 8, 9, 3, 4, 3, 5, 6, 3, 8, 8, 5, 1, 9, 2, 1, 5, 1, 6, 1, 7, 9, 8, 1, 3, 3, 8, 5, 2, 1, 7, 2, 7, 8, 9, 7, 2, 6, 8, 0, 2, 0, 5, 3, 1, 2, 0, 1, 8, 1, 2, 1, 6, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -3.69221424543584046112101682937268753850...
greatest:  1.519514926470401221585705162098148990...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -4; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.7, -3.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199735 least root *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199736 greatest root *)

A199737 Decimal expansion of least x satisfying x^2-4*x*cos(x)=sin(x).

Original entry on oeis.org

3, 6, 4, 1, 7, 3, 6, 5, 1, 0, 4, 2, 3, 2, 0, 3, 0, 8, 9, 1, 5, 6, 8, 0, 1, 7, 1, 2, 1, 9, 1, 6, 8, 8, 9, 1, 9, 4, 7, 4, 4, 1, 5, 6, 3, 0, 6, 1, 3, 8, 5, 4, 5, 6, 9, 0, 8, 9, 9, 4, 2, 4, 5, 1, 9, 9, 5, 8, 6, 1, 0, 9, 4, 0, 3, 4, 5, 1, 0, 1, 0, 9, 8, 2, 7, 9, 2, 6, 9, 6, 7, 0, 5, 5, 8, 2, 4, 5, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -3.6417365104232030891568017121916889194744...
greatest:  1.39694868354568477235286357946526821398...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -4; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.7, -3.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199737 least root *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.39, 1.40}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199738 greatest root *)

A199738 Decimal expansion of greatest x satisfying x^2-4*x*cos(x)=sin(x).

Original entry on oeis.org

1, 3, 9, 6, 9, 4, 8, 6, 8, 3, 5, 4, 5, 6, 8, 4, 7, 7, 2, 3, 5, 2, 8, 6, 3, 5, 7, 9, 4, 6, 5, 2, 6, 8, 2, 1, 3, 9, 8, 0, 4, 3, 6, 8, 9, 7, 5, 9, 2, 7, 1, 4, 1, 0, 6, 1, 4, 0, 9, 5, 0, 0, 9, 7, 9, 8, 5, 7, 9, 4, 3, 9, 4, 6, 9, 5, 5, 3, 7, 2, 4, 5, 5, 0, 3, 7, 8, 5, 0, 4, 7, 9, 5, 3, 7, 9, 7, 3, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -3.6417365104232030891568017121916889194744...
greatest:  1.39694868354568477235286357946526821398...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -4; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.7, -3.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199737 least root *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.39, 1.40}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199738 greatest root *)

A199598 Decimal expansion of x>0 satisfying x^2+x*cos(x)=3*sin(x).

Original entry on oeis.org

1, 8, 3, 8, 2, 4, 3, 4, 5, 4, 9, 7, 1, 0, 3, 9, 6, 4, 2, 3, 1, 9, 1, 9, 8, 8, 7, 1, 2, 2, 9, 0, 1, 0, 2, 1, 4, 4, 8, 8, 8, 0, 1, 5, 0, 0, 3, 3, 4, 7, 8, 3, 4, 0, 0, 4, 6, 9, 5, 6, 8, 7, 1, 4, 5, 3, 1, 4, 7, 2, 6, 3, 3, 5, 8, 4, 1, 5, 2, 5, 0, 7, 2, 3, 8, 7, 0, 9, 1, 9, 6, 4, 2, 7, 5, 3, 6, 9, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.83824345497103964231919887122901021448880...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.83, 1.84}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199598 *)

A199599 Decimal expansion of x>0 satisfying x^2+x*cos(x)=4*sin(x).

Original entry on oeis.org

2, 1, 2, 5, 9, 8, 6, 5, 4, 9, 9, 7, 7, 7, 0, 3, 0, 4, 2, 5, 1, 2, 1, 6, 2, 5, 5, 7, 8, 8, 0, 4, 3, 1, 8, 4, 7, 2, 1, 0, 0, 7, 9, 4, 1, 4, 4, 8, 1, 7, 8, 7, 8, 7, 7, 6, 3, 0, 8, 5, 5, 5, 2, 6, 5, 9, 0, 7, 3, 8, 7, 4, 2, 9, 2, 8, 5, 4, 4, 8, 2, 8, 5, 5, 0, 2, 4, 6, 7, 5, 6, 2, 4, 7, 5, 7, 8, 3, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.1259865499777030425121625578804318472100...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 1; c = 4;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.12, 2.13}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199599 *)
Previous Showing 21-30 of 98 results. Next