cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 98 results. Next

A199664 Decimal expansion of x > 0 satisfying 3*x^2 + x*cos(x) = 3*sin(x).

Original entry on oeis.org

6, 6, 5, 5, 9, 9, 0, 7, 7, 3, 3, 0, 6, 7, 6, 1, 5, 2, 5, 0, 5, 2, 6, 5, 1, 9, 2, 2, 6, 8, 8, 5, 3, 0, 2, 8, 5, 4, 3, 4, 8, 9, 7, 4, 7, 9, 1, 5, 0, 6, 1, 4, 7, 2, 4, 8, 9, 4, 2, 4, 2, 2, 3, 7, 9, 0, 9, 6, 8, 0, 5, 6, 1, 6, 1, 3, 3, 8, 6, 2, 2, 1, 1, 6, 4, 8, 5, 2, 4, 6, 3, 4, 8, 5, 9, 8, 9, 6, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.6655990773306761525052651922688530...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 3; b = 1; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 1.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .66, .67}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199664 *)

Extensions

a(88) onwards corrected by Georg Fischer, Aug 03 2021

A199665 Decimal expansion of x>0 satisfying 3*x^2+x*cos(x)=4*sin(x).

Original entry on oeis.org

9, 4, 7, 9, 7, 2, 6, 4, 7, 8, 8, 9, 8, 1, 4, 2, 4, 4, 0, 4, 2, 0, 5, 0, 6, 9, 6, 1, 9, 7, 5, 5, 0, 2, 2, 3, 4, 0, 0, 4, 3, 8, 1, 4, 9, 4, 1, 5, 5, 9, 3, 8, 6, 5, 5, 0, 1, 9, 5, 0, 6, 5, 6, 2, 0, 1, 0, 5, 5, 9, 7, 4, 0, 7, 4, 5, 0, 6, 2, 1, 6, 8, 5, 0, 2, 5, 1, 0, 1, 5, 1, 7, 3, 0, 9, 3, 9, 5, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.947972647889814244042050696197550223400...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 3; b = 1; c = 4;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 1.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .94, .95}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199665 *)

A199666 Decimal expansion of x<0 satisfying 3*x+2*cos(x)=0.

Original entry on oeis.org

5, 6, 3, 5, 6, 9, 2, 0, 4, 2, 2, 5, 5, 1, 5, 6, 4, 2, 4, 9, 0, 5, 0, 1, 8, 0, 7, 1, 3, 5, 1, 3, 2, 0, 4, 5, 0, 6, 1, 0, 7, 4, 4, 7, 2, 4, 3, 2, 6, 8, 7, 2, 9, 5, 8, 0, 3, 4, 8, 3, 5, 5, 1, 2, 7, 8, 6, 1, 1, 1, 5, 2, 8, 6, 2, 5, 9, 0, 0, 1, 3, 7, 8, 1, 1, 0, 6, 7, 0, 2, 5, 4, 8, 3, 7, 3, 1, 6, 9
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			-0.563569204225515642490501807135132045061074472...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 3; b = 2; c = 0;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 1.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.57, -.56}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199666 *)

A199667 Decimal expansion of x<0 satisfying 3*x^2+2*x*cos(x)=sin(x).

Original entry on oeis.org

3, 0, 7, 3, 2, 0, 6, 2, 1, 1, 8, 2, 8, 1, 9, 4, 0, 7, 3, 4, 1, 1, 9, 6, 6, 6, 9, 3, 8, 6, 1, 5, 4, 9, 1, 9, 8, 2, 5, 4, 5, 0, 8, 1, 6, 4, 8, 4, 3, 3, 6, 2, 0, 7, 1, 8, 6, 5, 5, 8, 1, 5, 0, 8, 0, 0, 3, 9, 2, 5, 4, 8, 6, 2, 7, 6, 6, 1, 5, 9, 2, 9, 6, 3, 3, 6, 7, 8, 6, 6, 7, 5, 0, 0, 8, 2, 3, 7, 2
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			-0.30732062118281940734119666938615491...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 3; b = 2; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 1.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.31, -.30}, WorkingPrecision -> 110]
    RealDigits[r] (* A199667 *)

A199668 Decimal expansion of x>0 satisfying 3*x^2+2*x*cos(x)=3*sin(x).

Original entry on oeis.org

3, 5, 3, 9, 0, 4, 4, 5, 9, 0, 7, 0, 7, 6, 7, 0, 0, 9, 6, 9, 0, 0, 0, 7, 1, 0, 2, 7, 2, 4, 6, 6, 4, 6, 4, 6, 9, 9, 1, 2, 0, 3, 8, 6, 5, 8, 0, 0, 6, 9, 0, 2, 6, 6, 0, 2, 1, 1, 9, 5, 5, 6, 6, 0, 8, 6, 7, 0, 2, 0, 6, 3, 7, 4, 7, 6, 7, 8, 0, 9, 7, 9, 4, 8, 2, 0, 8, 9, 0, 6, 2, 8, 8, 3, 9, 5, 1, 5, 3
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.3539044590707670096900071027246646469912...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 3; b = 2; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .35, .36}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199668 *)

A199669 Decimal expansion of x>0 satisfying 3*x^2+2*x*cos(x)=4*sin(x).

Original entry on oeis.org

7, 1, 9, 8, 5, 9, 8, 6, 7, 2, 0, 4, 1, 1, 7, 6, 4, 9, 3, 6, 1, 1, 3, 3, 4, 4, 0, 9, 1, 0, 7, 0, 0, 9, 5, 3, 2, 3, 1, 1, 8, 6, 0, 3, 7, 4, 7, 5, 9, 5, 9, 4, 6, 2, 6, 8, 9, 8, 0, 2, 9, 4, 6, 0, 8, 9, 6, 0, 5, 8, 6, 9, 6, 8, 7, 8, 1, 5, 3, 9, 7, 6, 4, 6, 5, 0, 5, 2, 2, 5, 9, 0, 1, 5, 4, 3, 0, 8, 9
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.7198598672041176493611334409107009532311...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 3; b = 2; c = 4;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .71, .72}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199669 *)

A199719 Decimal expansion of x>0 satisfying x^2-x*cos(x)=4*sin(x).

Original entry on oeis.org

1, 8, 3, 7, 1, 8, 8, 7, 3, 0, 0, 1, 5, 1, 4, 3, 9, 2, 4, 2, 5, 7, 5, 6, 9, 4, 4, 1, 6, 2, 2, 0, 0, 8, 2, 3, 2, 5, 5, 8, 4, 2, 3, 7, 5, 1, 1, 5, 2, 9, 8, 6, 0, 1, 3, 5, 4, 9, 2, 3, 6, 1, 7, 3, 4, 8, 3, 1, 2, 5, 7, 1, 2, 9, 0, 7, 2, 5, 7, 0, 9, 7, 2, 6, 5, 2, 8, 7, 3, 8, 1, 9, 8, 4, 7, 6, 7, 8, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.837188730015143924257569441622008232558...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -1; c = 4;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199719 *)

A199720 Decimal expansion of x>0 satisfying x^2-x*cos(x)=3*sin(x).

Original entry on oeis.org

1, 6, 7, 5, 7, 1, 3, 3, 5, 8, 1, 7, 7, 0, 1, 5, 2, 7, 0, 4, 0, 5, 4, 3, 4, 8, 9, 1, 5, 2, 9, 3, 0, 4, 6, 0, 2, 9, 7, 1, 7, 0, 1, 7, 0, 7, 7, 6, 4, 1, 4, 8, 9, 9, 7, 3, 1, 7, 4, 6, 6, 7, 6, 8, 1, 8, 4, 0, 9, 5, 0, 6, 8, 2, 0, 7, 2, 6, 1, 6, 0, 3, 0, 4, 1, 5, 2, 6, 7, 8, 4, 1, 6, 2, 3, 6, 8, 4, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.67571335817701527040543489152930460297170170...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -1; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]
    RealDigits[r] (* A199720 *)

A199721 Decimal expansion of x>0 satisfying x^2-x*cos(x)=2*sin(x).

Original entry on oeis.org

1, 4, 6, 4, 3, 3, 5, 1, 0, 3, 8, 6, 8, 0, 6, 7, 6, 6, 9, 6, 2, 3, 7, 2, 0, 4, 7, 8, 4, 2, 0, 4, 0, 8, 3, 7, 6, 2, 4, 9, 2, 5, 7, 4, 8, 6, 5, 8, 7, 2, 1, 7, 0, 0, 0, 4, 2, 3, 4, 7, 0, 1, 5, 6, 4, 2, 9, 2, 1, 9, 5, 7, 5, 8, 3, 4, 2, 4, 6, 0, 5, 7, 9, 4, 7, 6, 4, 9, 5, 8, 0, 7, 8, 8, 8, 3, 2, 1, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.46433510386806766962372047842040837624925...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -1; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199721 *)

A199722 Decimal expansion of x>0 satisfying x^2-x*cos(x)=sin(x).

Original entry on oeis.org

1, 1, 7, 3, 1, 4, 8, 3, 8, 0, 8, 5, 5, 4, 0, 4, 0, 7, 9, 5, 3, 5, 9, 8, 3, 2, 2, 6, 8, 7, 2, 9, 2, 2, 6, 3, 8, 8, 3, 5, 8, 6, 5, 0, 3, 2, 0, 0, 9, 5, 2, 8, 9, 8, 4, 1, 2, 5, 8, 8, 4, 1, 1, 2, 4, 3, 1, 2, 6, 8, 6, 4, 8, 6, 0, 3, 4, 7, 1, 1, 7, 9, 6, 5, 8, 1, 0, 0, 6, 8, 7, 5, 2, 5, 3, 9, 6, 8, 5
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.1731483808554040795359832268729226388...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = -1; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.17, 1.18}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199722 *)
Previous Showing 41-50 of 98 results. Next