cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A199707 Number of -n..n arrays x(0..4) of 5 elements with zero sum and no two neighbors equal.

Original entry on oeis.org

14, 200, 892, 2734, 6504, 13324, 24394, 41344, 65788, 99858, 145596, 205612, 282386, 379036, 498440, 644218, 819692, 1028960, 1275766, 1564716, 1899968, 2286630, 2729288, 3233528, 3804374, 4447920, 5169588, 5975974, 6872944, 7867572, 8966146
Offset: 1

Views

Author

R. H. Hardin, Nov 09 2011

Keywords

Comments

Row 5 of A199704.

Examples

			Some solutions for n=5:
.-5...-1...-3...-4....4....1...-3...-1....5....0...-4....1....4....0....2....1
..0....0....1...-3....1....3....1....2...-3...-2...-3...-2....0....2....3...-3
.-3...-4....2....3...-3....1...-4...-1...-1....5....1...-3...-3....4...-5....5
..3....2...-5....1...-4...-5....2....1...-3...-2....2....4....1...-4....4....1
..5....3....5....3....2....0....4...-1....2...-1....4....0...-2...-2...-4...-4
		

Crossrefs

Cf. A199704.

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-2*a(n-5)+2*a(n-6)+a(n-8)-2*a(n-10)+a(n-11).
Empirical g.f.: 2*x*(7 + 86*x + 246*x^2 + 482*x^3 + 618*x^4 + 618*x^5 + 426*x^6 + 222*x^7 + 47*x^8 + 8*x^9) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). - Colin Barker, May 16 2018

A199709 Number of -n..n arrays x(0..6) of 7 elements with zero sum and no two neighbors equal.

Original entry on oeis.org

56, 2642, 27854, 149942, 559028, 1643204, 4099204, 9059092, 18251656, 34171380, 60292468, 101279218, 163252890, 254042820, 383508158, 563826638, 809873706, 1139548482, 1574209250, 2139036592, 2863528108, 3781894246, 4933615190
Offset: 1

Views

Author

R. H. Hardin Nov 09 2011

Keywords

Comments

Row 7 of A199704

Examples

			Some solutions for n=5
.-4....2...-5....0...-4...-4...-5....0....1....1....0...-5....2...-5....1....2
..1...-5....2....2....1....2....1...-5....0...-5...-4....0...-5....0...-4....1
..5....3...-1...-2....4...-1....4...-3....3....1....4....4...-4....3...-3....2
..4....4....5....4...-4....3....2....1...-1....3...-1...-5....4....1....2...-1
.-1....3...-3....2....4...-1....5....2...-2...-2...-2...-1....2....3....5...-5
.-4...-4...-2...-5....1....2...-5....1....3...-1....5....4...-1...-2....0...-1
.-1...-3....4...-1...-2...-1...-2....4...-4....3...-2....3....2....0...-1....2
		

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+a(n-6)-2*a(n-7)+2*a(n-8)+a(n-9)-a(n-13)-2*a(n-14)+2*a(n-15)-a(n-16)+a(n-17)+a(n-19)-2*a(n-21)+a(n-22)
Previous Showing 11-12 of 12 results.