cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 158 results. Next

A200358 Decimal expansion of least x>0 satisfying 2*x^2+1=tan(x).

Original entry on oeis.org

1, 3, 6, 1, 4, 6, 7, 2, 4, 9, 5, 0, 1, 4, 4, 4, 1, 9, 9, 9, 3, 0, 0, 0, 6, 1, 9, 6, 1, 1, 0, 2, 7, 3, 6, 2, 6, 7, 7, 8, 0, 5, 2, 7, 5, 9, 7, 8, 6, 3, 1, 1, 0, 8, 0, 5, 8, 1, 0, 9, 7, 6, 1, 3, 2, 7, 2, 1, 7, 8, 4, 3, 2, 8, 7, 4, 1, 6, 7, 8, 4, 8, 7, 2, 9, 0, 4, 9, 9, 4, 1, 3, 5, 5, 7, 9, 2, 1, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.36146724950144419993000619611027362677805...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 0; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200358 *)

A200359 Decimal expansion of least x>0 satisfying 2*x^2+3=tan(x).

Original entry on oeis.org

1, 4, 3, 0, 7, 5, 7, 4, 5, 7, 5, 9, 3, 5, 3, 5, 4, 4, 3, 5, 1, 5, 4, 9, 3, 9, 2, 8, 4, 7, 3, 2, 3, 8, 6, 5, 9, 6, 4, 0, 0, 4, 5, 0, 5, 7, 9, 1, 8, 9, 4, 7, 0, 8, 8, 2, 0, 0, 6, 2, 1, 2, 1, 0, 5, 6, 7, 2, 3, 6, 7, 5, 6, 1, 2, 1, 2, 3, 8, 9, 2, 7, 4, 3, 3, 6, 7, 2, 9, 7, 3, 2, 5, 8, 9, 1, 4, 7, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.4307574575935354435154939284732386596400...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 0; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200359 *)

A200360 Decimal expansion of least x>0 satisfying 2*x^2+x+1=tan(x).

Original entry on oeis.org

1, 4, 1, 6, 4, 9, 7, 8, 3, 4, 1, 7, 8, 0, 0, 1, 3, 0, 2, 3, 8, 7, 9, 2, 6, 6, 8, 6, 2, 7, 1, 0, 0, 2, 9, 1, 7, 7, 9, 8, 4, 0, 3, 9, 5, 7, 6, 9, 1, 4, 6, 0, 4, 0, 7, 0, 7, 5, 6, 3, 9, 8, 0, 6, 1, 4, 9, 1, 8, 4, 9, 2, 3, 4, 8, 3, 5, 0, 6, 8, 1, 8, 1, 1, 8, 9, 5, 5, 2, 8, 2, 4, 8, 0, 2, 9, 1, 6, 1, 5, 6, 6, 5
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.41649783417800130238792668627100291779840...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 1; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200360 *)

A200361 Decimal expansion of least x>0 satisfying 2*x^2+x+2=tan(x).

Original entry on oeis.org

1, 4, 3, 9, 7, 1, 8, 2, 0, 2, 0, 7, 1, 9, 7, 6, 6, 7, 0, 3, 4, 9, 2, 6, 1, 3, 2, 4, 1, 4, 8, 3, 7, 8, 3, 0, 3, 1, 3, 0, 6, 8, 9, 2, 4, 3, 4, 3, 9, 0, 6, 3, 8, 8, 5, 0, 1, 4, 9, 4, 8, 3, 8, 0, 2, 3, 3, 0, 8, 5, 6, 3, 8, 1, 3, 0, 7, 3, 2, 6, 5, 2, 7, 4, 9, 4, 5, 2, 3, 1, 3, 5, 5, 7, 2, 8, 1, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.439718202071976670349261324148378303130...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 1; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200361 *)

A200362 Decimal expansion of least x>0 satisfying 2*x^2+x+3=tan(x).

Original entry on oeis.org

1, 4, 5, 6, 3, 3, 1, 7, 0, 8, 0, 7, 6, 4, 7, 2, 5, 7, 5, 3, 6, 8, 8, 1, 7, 2, 2, 2, 8, 7, 3, 1, 2, 7, 2, 6, 8, 5, 3, 0, 9, 6, 3, 8, 8, 0, 7, 4, 3, 2, 6, 4, 9, 5, 7, 4, 5, 2, 9, 8, 4, 1, 6, 2, 9, 3, 6, 6, 9, 3, 2, 1, 4, 6, 6, 9, 9, 1, 9, 4, 5, 4, 9, 2, 6, 4, 7, 7, 7, 9, 0, 1, 5, 0, 6, 6, 4, 4, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.456331708076472575368817222873127268530963880...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 1; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200362 *)

A200363 Decimal expansion of least x>0 satisfying 2*x^2+x+4=tan(x).

Original entry on oeis.org

1, 4, 6, 8, 9, 4, 8, 1, 7, 5, 4, 0, 7, 9, 2, 8, 0, 9, 3, 8, 9, 8, 5, 1, 0, 4, 3, 0, 6, 7, 8, 4, 6, 8, 8, 2, 0, 6, 6, 9, 8, 8, 6, 2, 2, 9, 7, 8, 0, 3, 1, 9, 7, 5, 8, 5, 4, 1, 9, 3, 2, 9, 9, 7, 7, 0, 5, 9, 4, 5, 5, 1, 2, 9, 0, 6, 9, 4, 8, 9, 5, 3, 6, 1, 3, 1, 7, 8, 9, 9, 8, 2, 0, 9, 9, 0, 8, 4, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.468948175407928093898510430678468820669886...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 1; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200363 *)

A200364 Decimal expansion of least x>0 satisfying 2*x^2+2*x+1=tan(x).

Original entry on oeis.org

1, 4, 4, 7, 7, 7, 5, 5, 3, 8, 4, 2, 8, 4, 9, 3, 9, 8, 1, 4, 0, 8, 3, 9, 9, 1, 7, 2, 4, 7, 4, 7, 7, 9, 8, 3, 2, 8, 0, 6, 1, 6, 2, 9, 0, 9, 0, 3, 8, 3, 7, 3, 6, 7, 1, 7, 4, 0, 7, 6, 9, 3, 6, 8, 0, 8, 3, 4, 4, 3, 4, 3, 4, 5, 3, 2, 5, 0, 1, 7, 0, 3, 6, 0, 6, 6, 4, 0, 9, 6, 9, 6, 7, 1, 1, 7, 9, 6, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.447775538428493981408399172474779832806162909038...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 2; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200364 *)

A200365 Decimal expansion of least x > 0 satisfying 2*x^2 + 2*sin(x) + 3 = tan(x).

Original entry on oeis.org

1, 4, 6, 3, 3, 5, 1, 5, 2, 6, 2, 3, 9, 0, 5, 7, 3, 0, 0, 7, 6, 6, 6, 7, 3, 2, 2, 4, 3, 4, 8, 1, 5, 4, 1, 3, 0, 6, 7, 5, 6, 6, 7, 3, 6, 6, 7, 6, 4, 1, 9, 4, 3, 8, 9, 7, 3, 4, 3, 8, 2, 4, 9, 0, 0, 5, 8, 3, 3, 5, 2, 0, 6, 6, 6, 8, 5, 2, 2, 6, 9, 8, 9, 0, 5, 7, 0, 4, 9, 3, 6, 0, 8, 4, 2, 4, 5, 3, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.463351526239057300766673224348154130675667...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 2; c = 3;
    f[x_] := a*x^2 + b*Sin[x] + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200365 *)

Extensions

Definition corrected by Georg Fischer, Aug 05 2021

A200366 Decimal expansion of least x>0 satisfying 2*x^2+3*x+1=tan(x).

Original entry on oeis.org

1, 4, 6, 8, 2, 3, 5, 9, 2, 7, 5, 2, 7, 7, 5, 3, 2, 5, 6, 6, 3, 4, 3, 7, 2, 4, 8, 9, 0, 7, 8, 3, 8, 4, 1, 0, 0, 4, 4, 2, 4, 2, 8, 7, 4, 9, 5, 6, 4, 3, 8, 6, 1, 5, 1, 9, 9, 5, 1, 1, 1, 2, 9, 6, 9, 6, 3, 8, 8, 5, 7, 9, 5, 6, 2, 2, 0, 1, 6, 9, 2, 1, 1, 6, 6, 3, 7, 5, 2, 3, 1, 6, 7, 9, 5, 4, 7, 9, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.46823592752775325663437248907838410044242...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 3; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200366 *)

A200367 Decimal expansion of least x>0 satisfying 2*x^2+3*x+2=tan(x).

Original entry on oeis.org

1, 4, 7, 8, 5, 3, 2, 5, 2, 2, 0, 1, 6, 5, 0, 1, 4, 9, 2, 4, 3, 4, 4, 0, 8, 0, 5, 0, 4, 0, 9, 0, 8, 4, 3, 5, 0, 7, 4, 8, 3, 3, 2, 7, 5, 6, 3, 8, 8, 4, 2, 8, 4, 6, 0, 5, 1, 2, 8, 2, 8, 0, 6, 6, 7, 4, 7, 5, 7, 9, 2, 2, 6, 8, 0, 2, 7, 3, 5, 9, 4, 9, 9, 9, 7, 8, 2, 2, 9, 2, 3, 3, 5, 5, 3, 5, 5, 4, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.478532522016501492434408050409084350748332...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; b = 3; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200367 *)
Previous Showing 21-30 of 158 results. Next