cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A202125 Number of -n..n arrays of 4 elements with first, second and third differences also in -n..n.

Original entry on oeis.org

19, 127, 475, 1279, 2833, 5509, 9739, 16039, 25003, 37279, 53605, 74797, 101719, 135331, 176671, 226819, 286957, 358345, 442279, 540163, 653479, 783739, 932569, 1101673, 1292779, 1507735, 1748467, 2016919, 2315161, 2645341, 3009619, 3410287
Offset: 1

Views

Author

R. H. Hardin, Dec 11 2011

Keywords

Comments

Row 4 of A202124.

Examples

			Some solutions for n=5:
  -4   1   0   1  -2   2   3  -3  -2   2   2   1   3  -1  -1   2
  -4  -4  -4  -1  -2   0   2   0  -4   2   2  -1  -1   0  -1   4
  -1  -5  -4  -2   0  -1   0   4  -2   2   0   0  -3  -2  -1   4
   1  -5   1   1   1   0   0   5   1   4  -4   1   0  -5   4   1
		

Crossrefs

Cf. A202124.

Formula

Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) - 6*a(n-4) + 6*a(n-5) - 3*a(n-6) + 3*a(n-7) - 3*a(n-8) + a(n-9).
Empirical g.f.: x*(19 + 70*x + 151*x^2 + 178*x^3 + 154*x^4 + 70*x^5 + 19*x^6 - 2*x^7 + x^8) / ((1 - x)^5*(1 + x + x^2)^2). - Colin Barker, Mar 03 2018

A202117 Number of -1..1 arrays of n elements with first, second and third differences also in -1..1.

Original entry on oeis.org

3, 7, 13, 19, 27, 35, 47, 65, 91, 129, 185, 267, 387, 563, 821, 1199, 1753, 2565, 3755, 5499, 8055, 11801, 17291, 25337, 37129, 54411, 79739, 116859, 171261, 250991, 367841, 539093, 790075, 1157907, 1696991, 2487057, 3644955, 5341937, 7828985
Offset: 1

Views

Author

R. H. Hardin, Dec 11 2011

Keywords

Comments

Column 1 of A202124.

Examples

			Some solutions for n=7:
..1....1....1....0....1....1....0....0....1....1...-1...-1...-1....1...-1....0
..1....0....1...-1....0....1...-1....1....1....1....0...-1...-1....0....0....0
..1...-1....1...-1....0....0...-1....1....1....1....0...-1....0....0....1....0
..1...-1....1....0....0...-1...-1....1....1....0....0...-1....1....0....1....0
..1....0....1....1....0...-1...-1....0....0...-1....0...-1....1....0....1....0
..1....1....1....1....0....0....0...-1...-1...-1....0...-1....0....0....1....0
..0....1....1....0...-1....1....1...-1...-1...-1....1...-1...-1....0....0....0
		

Crossrefs

Cf. A202124.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) for n>8.
Empirical g.f.: x*(3 + x + 2*x^2 - 3*x^3 - 2*x^4 - 6*x^5 - 2*x^6 - 2*x^7) / ((1 - x)*(1 - x - x^3)). - Colin Barker, May 27 2018

A202118 Number of -2..2 arrays of n elements with first, second and third differences also in -2..2.

Original entry on oeis.org

5, 19, 57, 127, 293, 663, 1517, 3459, 7905, 18051, 41239, 94203, 215217, 491661, 1123219, 2566023, 5862189, 13392389, 30595439, 69896451, 159681185, 364797903, 833395099, 1903923685, 4349588175, 9936804401, 22701018621, 51861365563
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 2 of A202124

Examples

			Some solutions for n=7
..1...-1...-1....1....1....1...-2....1....0....2...-2...-2....0....1....1....0
..0...-2...-2....1...-1....1....0....1....2....2....0...-2...-1....0....1...-1
..0...-2...-2....2...-1....0....0....2....2....1....2...-1...-1....0....0...-2
.-1...-2...-1....2...-1....0....0....2....2....1....2....0...-1....1....0...-1
.-1....0....1....2...-1...-1....1....2....1....0....1....1....0....1....0....0
.-1....2....2....1...-1...-2....2....0...-1...-1....1....1....0....1....0....0
..1....2....1....1...-1...-2....2...-2...-2....0....2....0....1....2...-1...-1
		

Formula

Empirical: a(n) = 2*a(n-1) +a(n-3) +3*a(n-4) -2*a(n-5) -3*a(n-6) -4*a(n-7) -3*a(n-8) -2*a(n-9) +3*a(n-10) +4*a(n-11) +2*a(n-12) for n>17

A202119 Number of -3..3 arrays of n elements with first, second and third differences also in -3..3.

Original entry on oeis.org

7, 37, 153, 475, 1509, 4763, 15101, 47889, 151833, 481519, 1527001, 4842421, 15356565, 48699233, 154436377, 489754155, 1553125143, 4925322519, 15619350977, 49532617623, 157079520865, 498135926335, 1579705609759, 5009616203811
Offset: 1

Views

Author

R. H. Hardin, Dec 11 2011

Keywords

Examples

			Some solutions for n=7
..2....2....1....3....3....2...-3....2....2....2...-1....0...-2...-3....2....0
..0....2....1....1....3....0...-2....2....2...-1....0...-1...-2...-3....3...-1
..0....2...-1....1....3....1....0....1....1...-2....0...-3...-2...-3....1....1
..1....1...-2....2....3....3....1...-1....0...-1...-1...-3...-1...-3...-1....3
..2....0...-2....1....3....3....1...-1...-2....0...-1...-3....1...-1....0....3
..3...-2...-3...-1....0....1....0...-1...-3....0...-1...-2....2....1....1....3
..2...-3...-3...-2...-3...-2...-3...-3...-1....0...-1....1....0....3....3....1
		

Crossrefs

Column 3 of A202124.

Formula

Empirical: a(n) = 4*a(n-1) -5*a(n-2) +13*a(n-3) -19*a(n-4) +14*a(n-5) -32*a(n-6) +8*a(n-7) +4*a(n-8) +24*a(n-9) +27*a(n-10) +26*a(n-11) -48*a(n-12) -29*a(n-13) -56*a(n-14) -55*a(n-15) +134*a(n-16) -80*a(n-17) +244*a(n-18) -170*a(n-19) +149*a(n-20) -175*a(n-21) +70*a(n-22) -68*a(n-23) +32*a(n-24) -22*a(n-25) +2*a(n-26) -8*a(n-27) +a(n-28) +2*a(n-29) +2*a(n-30) for n>35.
Empirical formula verified: see link. - Robert Israel, Sep 22 2019

A202120 Number of -4..4 arrays of n elements with first, second and third differences also in -4..4.

Original entry on oeis.org

9, 61, 323, 1279, 5205, 21093, 85771, 348841, 1418711, 5769945, 23467095, 95443593, 388180467, 1578775913, 6421070989, 26115267153, 106213924727, 431984776463, 1756933935339, 7145661191995, 29062261695493, 118199706395781
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 4 of A202124

Examples

			Some solutions for n=7
..2....1...-4....0....4....0....3....3....4...-1...-2....2...-1...-4....1....1
.-2....1...-3...-2....4...-2....0...-1....0....2...-3....0...-2...-3...-3....4
.-4....2...-3...-3....4...-2....0...-4...-2....4...-3...-3...-4....1...-4....3
.-2....1...-4...-1....3...-1....2...-3...-3....3...-4...-3...-4....4...-3....1
..1....0...-4....2....4....0....2...-2...-3....2...-3...-4...-2....3...-2....1
..2...-1...-3....3....4....0....4....0...-1....0...-3...-3...-1....2...-2....1
..3...-3...-3....0....2...-4....4....0....0...-1...-2...-4...-1....3....0....1
		

Formula

Empirical: a(n) = 5*a(n-1) -3*a(n-2) -2*a(n-3) -30*a(n-5) +38*a(n-6) +3*a(n-7) +7*a(n-8) +53*a(n-9) -231*a(n-10) +162*a(n-11) +158*a(n-12) -324*a(n-13) +637*a(n-14) -176*a(n-15) -712*a(n-16) +106*a(n-17) -545*a(n-18) +1800*a(n-19) +1339*a(n-20) -2116*a(n-21) -1941*a(n-22) -4947*a(n-23) +1650*a(n-24) +8446*a(n-25) +2274*a(n-26) +2636*a(n-27) -8685*a(n-28) -8752*a(n-29) +6866*a(n-30) +5310*a(n-31) +13318*a(n-32) +342*a(n-33) -14687*a(n-34) -7785*a(n-35) -16694*a(n-36) -688*a(n-37) +10880*a(n-38) +8362*a(n-39) +17910*a(n-40) +1396*a(n-41) -5792*a(n-42) -4461*a(n-43) -9176*a(n-44) +954*a(n-45) +957*a(n-46) -1163*a(n-47) +2833*a(n-48) +949*a(n-49) +1131*a(n-50) +266*a(n-51) -1730*a(n-52) -345*a(n-53) +290*a(n-54) -5*a(n-55) -200*a(n-56) -141*a(n-57) +140*a(n-58) +85*a(n-59) +14*a(n-60) +18*a(n-61) -a(n-62) -2*a(n-63) for n>72

A202121 Number of -5..5 arrays of n elements with first, second and third differences also in -5..5.

Original entry on oeis.org

11, 91, 587, 2833, 14063, 69573, 345241, 1713419, 8503671, 42203951, 209464959, 1039605903, 5159703889, 25608300207, 127097485317, 630802143547, 3130756848055, 15538372099147, 77119055108453, 382752363927519
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 5 of A202124

Examples

			Some solutions for n=5
.-3...-3...-2...-3....0....4....0....0...-4....0...-5....1...-5....3....2...-4
..0....1....0...-1....2....0....2...-2...-1....1...-5...-3...-4....3....0...-5
..0....5...-2....2....2....0....3...-3....2....1...-2...-4....0....1...-3...-4
..2....4...-3....3....0....0....5...-3....4...-2....0....0....2....0...-4...-3
..5...-1...-5....3....0...-5....3....0....3...-5....4....4....1....2...-1....1
		

A202122 Number of -6..6 arrays of n elements with first, second and third differences also in -6..6.

Original entry on oeis.org

13, 127, 967, 5509, 32267, 188505, 1104357, 6471075, 37917347, 222179581, 1301902689, 7628745319, 44701958081, 261938834035, 1534876473727, 8993877595975, 52701197650513, 308811879264259, 1809537203539017
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 6 of A202124

Examples

			Some solutions for n=5
.-4...-3....0...-3....0...-5....4...-1...-1...-5....3....2...-4...-6....3....1
.-1...-5...-5....1....4...-6...-2....2...-4...-1...-3....5...-3...-6....4....2
..2...-5...-6....5....2...-3...-3....4...-2....2...-5....2...-4...-1....2....0
..4...-5...-4....5...-2...-1...-4....4....1....3...-1...-1...-2....4....0...-2
..3....0...-2....2...-4....5...-3....5....2....1....3...-4....1....5...-6...-5
		

A202123 Number of -7..7 arrays of n elements with first, second and third differences also in -7..7.

Original entry on oeis.org

15, 169, 1483, 9739, 65773, 443169, 2993875, 20229855, 136692527, 923636217, 6241166303, 42172597643, 284966475203, 1925560567969, 13011302413343, 87919326690553, 594084073349817, 4014315174232981, 27125329889094427
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 7 of A202124

Examples

			Some solutions for n=5
..1....0...-2....7....6....0....0...-3....1...-4...-2....6...-6....2...-4....2
..5....0....1....5...-1....7....1...-2....4...-2....0....3...-2....3...-2...-5
..7...-2....0....0...-4....7....5....0....3....2....4...-3....0....5...-3...-7
..7...-1....1...-5...-2....4....5...-1....3....2....5...-7....0....5...-2...-6
..0...-1....7...-6....0....2....6...-7...-3....4....3...-4....2....0...-3...-2
		

A202126 Number of -n..n arrays of 5 elements with first, second and third differences also in -n..n.

Original entry on oeis.org

27, 293, 1509, 5205, 14063, 32267, 65773, 122709, 213697, 352075, 554381, 840659, 1234569, 1764039, 2461495, 3363883, 4513485, 5958085, 7750859, 9951423, 12625883, 15846605, 19693499, 24253977, 29622535, 35902357, 43205125, 51650425
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Row 5 of A202124

Examples

			Some solutions for n=5
.-2....3...-3...-2....4....5...-1...-1....3....3...-3....3...-5...-2....1....4
.-4....1....1...-2....5....1....0...-4....4....2...-5...-1...-4....0....0....5
.-5...-1....1...-2....3....0....1...-3....3....2...-3...-1...-4....2....1....5
.-5....1....1...-1....2....2....2...-3....1....2....1....2...-3....2...-1....4
.-2....4...-2....1....5....5....3...-4...-3...-3....3....5....2....4...-3...-1
		

Formula

Empirical: a(n) = a(n-1) +3*a(n-3) -2*a(n-4) -4*a(n-6) +3*a(n-9) +3*a(n-10) -4*a(n-13) -2*a(n-15) +3*a(n-16) +a(n-18) -a(n-19).
a(n) ~ (44471/16200)*n^5. - Robert Israel, Jun 28 2019

A202127 Number of -n..n arrays of 6 elements with first, second and third differences also in -n..n.

Original entry on oeis.org

35, 663, 4763, 21093, 69573, 188505, 443169, 936715, 1822729, 3318565, 5722319, 9430801, 14956593, 22952527, 34234227, 49800691, 70867027, 98891365, 135597851, 183019459, 243528297, 319860401, 415169845, 533062403, 677620099, 853469649
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Row 6 of A202124

Examples

			Some solutions for n=5
..3...-2...-5...-2....0....4...-3...-1...-2...-2....2....4...-3...-2....2...-3
..5...-1...-5...-2...-1....3...-1...-1...-4....0....1....0...-1...-2....3...-5
..3....1...-4...-1...-3....1....0....1...-3....0...-1...-2...-1...-3....2...-4
..0....4...-5....3...-3....0....0....1...-2...-2...-2...-1....0...-2....3...-4
.-3....5...-4....5...-4....0...-3....1...-2...-4...-1...-1....2...-1....1...-2
.-4....3...-4....4...-5...-4...-4...-3....0...-2...-3...-4....0...-2...-1....1
		

Formula

Empirical: a(n) = -a(n-1) -3*a(n-2) -a(n-3) -3*a(n-4) +2*a(n-5) +7*a(n-7) +4*a(n-8) +11*a(n-9) +6*a(n-10) +10*a(n-11) +2*a(n-12) +2*a(n-13) -7*a(n-14) -9*a(n-15) -16*a(n-16) -17*a(n-17) -19*a(n-18) -17*a(n-19) -12*a(n-20) -7*a(n-21) +3*a(n-22) +7*a(n-23) +18*a(n-24) +18*a(n-25) +27*a(n-26) +21*a(n-27) +26*a(n-28) +14*a(n-29) +15*a(n-30) -15*a(n-33) -14*a(n-34) -26*a(n-35) -21*a(n-36) -27*a(n-37) -18*a(n-38) -18*a(n-39) -7*a(n-40) -3*a(n-41) +7*a(n-42) +12*a(n-43) +17*a(n-44) +19*a(n-45) +17*a(n-46) +16*a(n-47) +9*a(n-48) +7*a(n-49) -2*a(n-50) -2*a(n-51) -10*a(n-52) -6*a(n-53) -11*a(n-54) -4*a(n-55) -7*a(n-56) -2*a(n-58) +3*a(n-59) +a(n-60) +3*a(n-61) +a(n-62) +a(n-63)
Showing 1-10 of 11 results. Next