A208780 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 1 1 vertically.
2, 4, 4, 6, 16, 6, 10, 36, 36, 10, 16, 100, 36, 100, 16, 26, 256, 60, 60, 256, 26, 42, 676, 96, 100, 96, 676, 42, 68, 1764, 156, 160, 160, 156, 1764, 68, 110, 4624, 252, 260, 256, 260, 252, 4624, 110, 178, 12100, 408, 420, 416, 416, 420, 408, 12100, 178, 288, 31684, 660
Offset: 1
Examples
Some solutions for n=4 k=3 ..1..0..0....0..1..1....1..1..0....0..1..0....0..1..1....0..1..0....0..1..1 ..1..0..1....0..1..0....1..0..0....1..0..0....0..1..1....0..1..1....1..0..1 ..0..1..0....1..0..1....0..1..0....0..1..1....1..0..0....1..0..0....0..1..0 ..1..0..1....0..1..0....1..0..1....1..0..0....0..1..1....0..1..0....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..10018
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
k=3: a(n) = a(n-1) +a(n-2) for n>4
k=4: a(n) = a(n-1) +a(n-2) for n>4
k=5: a(n) = a(n-1) +a(n-2) for n>4
k=6: a(n) = a(n-1) +a(n-2) for n>4
k=7: a(n) = a(n-1) +a(n-2) for n>4
Comments