cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207089 Number of 3 X n 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

7, 49, 241, 1393, 7915, 44065, 248525, 1398065, 7855615, 44186849, 248469913, 1397116033, 7856468163, 44178243889, 248421665301, 1396925252001, 7855169243255, 44171085215953, 248382373987585, 1396700728871121
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Row 3 of A207088.

Examples

			Some solutions for n=4:
..0..1..0..1....0..1..1..1....1..1..0..0....0..0..1..0....1..0..1..1
..1..0..0..1....1..0..0..1....1..1..1..1....0..1..0..1....1..0..1..0
..0..1..0..0....0..0..1..0....1..1..0..0....0..1..0..0....0..0..1..0
		

Crossrefs

Cf. A207088.

Formula

Empirical: a(n) = 2*a(n-1) + 11*a(n-2) + 48*a(n-3) + 29*a(n-4) + 6*a(n-5) - 111*a(n-6) - 8*a(n-7) - 32*a(n-8) + 64*a(n-9).
Empirical g.f.: x*(7 + 35*x + 66*x^2 + 36*x^3 - 77*x^4 - 119*x^5 - 40*x^6 + 32*x^7 + 64*x^8) / (1 - 2*x - 11*x^2 - 48*x^3 - 29*x^4 - 6*x^5 + 111*x^6 + 8*x^7 + 32*x^8 - 64*x^9). - Colin Barker, Mar 04 2018

A207083 Number of n X 3 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

7, 49, 241, 1117, 4891, 20953, 88465, 370753, 1546879, 6437929, 26754673, 111093277, 461065507, 1912995217, 7935844129, 32917778401, 136534855735, 566294540737, 2348729268913, 9741340873213, 40401894006955, 167564911503529
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 3 of A207088.

Examples

			Some solutions for n=4:
..0..1..1....1..1..0....0..0..1....1..1..0....1..0..0....0..0..1....0..1..1
..1..1..0....0..0..1....0..1..1....1..0..1....1..0..1....1..0..0....0..1..1
..1..1..1....1..1..1....0..0..1....1..0..0....1..0..1....0..0..1....0..1..1
..1..0..1....1..0..0....0..0..1....0..0..1....1..0..1....0..0..1....0..1..1
		

Crossrefs

Cf. A207088.

Formula

Empirical: a(n) = 6*a(n-1) - 5*a(n-2) - 14*a(n-3) + 11*a(n-4) + 4*a(n-5) - a(n-6).
Empirical g.f.: x*(7 + 7*x - 18*x^2 + 14*x^3 + 3*x^4 - x^5) / ((1 - x)*(1 - 2*x - x^2)*(1 - 3*x - 5*x^2 + x^3)). - Colin Barker, Jun 18 2018

A207084 Number of n X 4 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

13, 169, 1393, 10621, 75221, 518001, 3500117, 23428181, 155913829, 1034324253, 6848794157, 45301138173, 299456026377, 1978795266229, 13073066599357, 86357724891721, 570419071704225, 3767635749133789, 24884750059577649
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 4 of A207088.

Examples

			Some solutions for n=4
..1..1..0..1....1..1..0..1....1..0..0..1....0..0..1..1....1..1..0..1
..0..1..0..1....1..0..0..1....0..1..1..0....1..1..1..1....1..1..0..1
..1..0..0..1....0..1..0..0....1..0..1..0....0..1..1..1....0..1..0..0
..0..1..0..1....1..1..0..1....1..1..1..0....0..1..1..0....0..1..0..0
		

Crossrefs

Cf. A207088.

Formula

Empirical: a(n) = 11*a(n-1) -11*a(n-2) -195*a(n-3) +361*a(n-4) +1387*a(n-5) -2443*a(n-6) -5105*a(n-7) +6602*a(n-8) +9836*a(n-9) -7666*a(n-10) -9322*a(n-11) +3553*a(n-12) +4167*a(n-13) -507*a(n-14) -741*a(n-15) +25*a(n-16) +51*a(n-17) -a(n-18) -a(n-19).
Formula confirmed by Robert Israel, May 15 2018 (see link).

A207085 Number of nX5 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

24, 576, 7915, 98824, 1128580, 12462017, 134515416, 1435875920, 15222933117, 160797590524, 1694784908488, 17840982852649, 187677940322644, 1973472076966664, 20746561913397599, 218073189862485432
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 5 of A207088

Examples

			Some solutions for n=4
..0..1..0..0..1....1..0..1..1..1....0..1..0..1..0....1..1..0..0..1
..0..1..1..0..1....0..0..1..1..0....1..1..0..1..1....1..0..1..0..0
..0..0..1..0..0....1..0..0..1..1....1..0..0..1..0....1..1..1..0..0
..0..0..1..0..1....1..0..1..1..1....0..1..0..0..1....0..1..1..0..0
		

Formula

Empirical: a(n) = 20*a(n-1) -36*a(n-2) -1402*a(n-3) +5996*a(n-4) +41936*a(n-5) -228109*a(n-6) -707846*a(n-7) +4452532*a(n-8) +7435580*a(n-9) -52897614*a(n-10) -49689394*a(n-11) +412179276*a(n-12) +200865684*a(n-13) -2191436998*a(n-14) -369347986*a(n-15) +8118788589*a(n-16) -606972804*a(n-17) -21152827318*a(n-18) +5670174884*a(n-19) +38816758504*a(n-20) -16502546224*a(n-21) -50027202357*a(n-22) +27860680732*a(n-23) +45049002205*a(n-24) -30428347248*a(n-25) -28101257460*a(n-26) +22384071086*a(n-27) +11939294532*a(n-28) -11292888220*a(n-29) -3325454439*a(n-30) +3929095778*a(n-31) +547578580*a(n-32) -938235828*a(n-33) -32157370*a(n-34) +151383486*a(n-35) -5941284*a(n-36) -16034948*a(n-37) +1475614*a(n-38) +1062474*a(n-39) -139265*a(n-40) -40504*a(n-41) +6566*a(n-42) +748*a(n-43) -144*a(n-44) -4*a(n-45) +a(n-46)

A207086 Number of nX6 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

44, 1936, 44065, 894720, 16421568, 289951889, 4992838052, 84911938560, 1433437132509, 24101659934756, 404301970759120, 6773277290974213, 113387774785651732, 1897354518319317836, 31741271831379492825
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 6 of A207088

Examples

			Some solutions for n=4
..1..0..1..1..1..0....0..1..0..0..1..0....1..0..1..0..1..0....1..0..1..0..0..1
..0..1..0..1..1..0....0..1..1..0..1..1....0..1..1..0..1..1....1..1..1..1..0..1
..0..1..1..1..0..0....0..0..1..0..0..1....0..1..0..0..1..0....0..1..1..1..0..1
..0..0..1..1..1..0....0..0..1..0..1..1....0..0..1..0..0..1....1..0..0..1..0..1
		

Formula

Empirical: a(n) = 40*a(n-1) -342*a(n-2) -5393*a(n-3) +91764*a(n-4) +145618*a(n-5) -8703092*a(n-6) +16642312*a(n-7) +454374188*a(n-8) -1722511000*a(n-9) -14821349990*a(n-10) +79561709508*a(n-11) +313725838766*a(n-12) -2306236920962*a(n-13) -4135508594071*a(n-14) +46279935543404*a(n-15) +24455110982501*a(n-16) -671702770677793*a(n-17) +226079758565126*a(n-18) +7202348716234959*a(n-19) -7265335398948552*a(n-20) -57487100476996174*a(n-21) +92553279377815122*a(n-22) +339902041546617844*a(n-23) -766064530273030600*a(n-24) -1454111080274985834*a(n-25) +4551674526152815952*a(n-26) +4192488132323141560*a(n-27) -20166106984953485156*a(n-28) -5997500830107660908*a(n-29) +67843513781274223795*a(n-30) -9889983582976272354*a(n-31) -174868109350700380500*a(n-32) +86519017771225938641*a(n-33) +346227882322571477798*a(n-34) -278686897175285858866*a(n-35) -524333247073857799450*a(n-36) +590864731723765092398*a(n-37) +597948415045768037678*a(n-38) -917952773372358466406*a(n-39) -492383678962887549906*a(n-40) +1087816475027948880586*a(n-41) +255911836401371800258*a(n-42) -1002275712007417443226*a(n-43) -25858406041094930858*a(n-44) +724956822404250532226*a(n-45) -94949365222279896310*a(n-46) -413350366137867671590*a(n-47) +106151252126535832961*a(n-48) +185753673285958158738*a(n-49) -68007487795165193414*a(n-50) -65496332081900357223*a(n-51) +30846870571451892164*a(n-52) +17936290465129643666*a(n-53) -10498182347575570056*a(n-54) -3740789846163968488*a(n-55) +2738973279158152542*a(n-56) +571096239291205336*a(n-57) -551671157833035568*a(n-58) -57817804539651938*a(n-59) +85713155889125996*a(n-60) +2468069643891796*a(n-61) -10209529256941447*a(n-62) +292066452816202*a(n-63) +922469907298477*a(n-64) -67197681250809*a(n-65) -62308571775176*a(n-66) +6690739952555*a(n-67) +3088909185842*a(n-68) -415350051908*a(n-69) -109918535404*a(n-70) +17082300930*a(n-71) +2733693768*a(n-72) -465782864*a(n-73) -45982020*a(n-74) +8171376*a(n-75) +500460*a(n-76) -86440*a(n-77) -3255*a(n-78) +482*a(n-79) +10*a(n-80) -a(n-81)

A207087 Number of nX7 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

81, 6561, 248525, 8244759, 243794389, 6897033117, 189659424011, 5142718466575, 138294979168509, 3702335938084439, 98860585328779343, 2635998227067669263, 70227731343750962247, 1870120121498081593459, 49786813201495602614131
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 7 of A207088

Examples

			Some solutions for n=4
..1..0..1..0..1..0..1....1..1..0..0..1..1..1....0..0..1..0..1..1..1
..0..0..1..0..0..1..0....1..1..1..1..1..0..1....1..1..1..1..0..0..1
..0..0..1..0..1..0..1....0..0..1..1..0..1..1....0..1..1..0..1..0..0
..0..0..1..0..0..1..0....0..0..1..0..0..1..1....1..0..1..1..1..0..0
		

A207090 Number of 4Xn 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

12, 144, 1117, 10621, 98824, 894720, 8244759, 75709453, 694032466, 6372084456, 58477847273, 536617596113, 4924871267328, 45196366353136, 414774195476647, 3806487479872457, 34932921065290570, 320586783126445036
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 4 of A207088

Examples

			Some solutions for n=4
..0..0..1..1....1..1..0..0....0..1..0..0....1..1..0..1....1..0..0..1
..1..1..1..1....0..0..1..1....0..0..1..0....1..1..0..1....0..1..1..0
..0..1..1..1....1..1..0..0....0..1..0..0....0..1..0..0....1..0..1..1
..0..1..1..0....1..0..0..1....0..0..1..0....0..1..0..0....1..1..1..1
		

Formula

Empirical: a(n) = a(n-1) +28*a(n-2) +344*a(n-3) +816*a(n-4) +1294*a(n-5) -10338*a(n-6) -19356*a(n-7) -50027*a(n-8) +175117*a(n-9) +123758*a(n-10) +709272*a(n-11) -1835144*a(n-12) +318196*a(n-13) -5529708*a(n-14) +11398328*a(n-15) -5985344*a(n-16) +22648164*a(n-17) -37478232*a(n-18) +19283976*a(n-19) -44313168*a(n-20) +60601968*a(n-21) -20512576*a(n-22) +37990000*a(n-23) -47677312*a(n-24) +5766976*a(n-25) -13423872*a(n-26) +20094976*a(n-27) -238592*a(n-28) +1727488*a(n-29) -4091904*a(n-30) +18432*a(n-31) +331776*a(n-33)

A207091 Number of 5Xn 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

20, 400, 4891, 75221, 1128580, 16421568, 243794389, 3604761693, 53194188406, 786410096464, 11619897293895, 171676634669401, 2536824358212672, 37483707701916584, 553852534268709149, 8183735938885018145
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 5 of A207088

Examples

			Some solutions for n=4
..1..1..0..1....0..1..1..0....1..1..0..1....0..1..1..0....1..1..1..1
..0..1..0..1....0..0..1..1....0..1..1..0....0..0..1..1....1..1..0..0
..1..0..0..1....0..0..1..1....1..1..1..0....0..0..1..0....0..0..1..1
..0..1..0..1....0..0..1..1....0..1..1..0....0..0..1..0....1..1..0..0
..1..0..0..1....0..0..1..0....0..0..1..0....0..0..1..0....1..0..0..1
		

Formula

Empirical: a(n) = a(n-1) +69*a(n-2) +1561*a(n-3) +6492*a(n-4) +18708*a(n-5) -245172*a(n-6) -890140*a(n-7) -4082884*a(n-8) +22691776*a(n-9) +41758068*a(n-10) +343447240*a(n-11) -1470641076*a(n-12) -122983964*a(n-13) -17375208796*a(n-14) +64882420036*a(n-15) -60696783648*a(n-16) +573527154656*a(n-17) -1888388256696*a(n-18) +2552777277808*a(n-19) -12334376010120*a(n-20) +35490367769840*a(n-21) -50245755032448*a(n-22) +169027988709328*a(n-23) -425087571721488*a(n-24) +554857613371792*a(n-25) -1459088221354832*a(n-26) +3259245954855296*a(n-27) -3656588737509056*a(n-28) +7994168378767824*a(n-29) -16398962935235104*a(n-30) +15011218537885088*a(n-31) -28438157914510048*a(n-32) +56418772179672128*a(n-33) -39969919791783072*a(n-34) +67404130406685152*a(n-35) -138756103743273520*a(n-36) +71278338744732048*a(n-37) -107480470932075424*a(n-38) +252401873317549632*a(n-39) -86701357304326720*a(n-40) +111957857980389504*a(n-41) -346049809277394080*a(n-42) +72913600270099648*a(n-43) -65656405877437984*a(n-44) +358339436055191168*a(n-45) -44237277115882752*a(n-46) +2939545977657664*a(n-47) -276507017029335936*a(n-48) +22210641851913024*a(n-49) +29637597026475456*a(n-50) +154862836604384960*a(n-51) -11000329736576320*a(n-52) -25757589184878656*a(n-53) -60581786356261056*a(n-54) +4882653807116352*a(n-55) +10927672280331840*a(n-56) +15659228046245184*a(n-57) -1423275153640128*a(n-58) -2464769731958208*a(n-59) -2428952149661184*a(n-60) +193736398337280*a(n-61) +246570408564480*a(n-62) +181492628486400*a(n-63)

A207092 Number of 6Xn 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

33, 1089, 20953, 518001, 12462017, 289951889, 6897033117, 163328551845, 3859116053775, 91371814060913, 2162098249763885, 51154844975987973, 1210540438174818673, 28644458404800644097, 677799353119887717715
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 6 of A207088

Examples

			Some solutions for n=4
..1..0..1..1....1..1..1..1....1..1..1..0....0..1..1..0....0..1..0..0
..0..0..1..0....1..1..1..1....1..1..1..0....1..1..0..0....0..1..0..1
..1..0..1..1....1..1..1..0....1..1..0..0....1..0..1..0....0..1..0..1
..0..0..1..1....1..0..1..1....0..0..1..0....1..1..1..0....0..1..0..0
..1..0..1..0....1..1..0..1....0..1..1..0....1..1..1..0....0..1..0..1
..1..0..0..1....0..1..0..1....0..1..1..0....0..0..1..0....0..1..0..0
		

A207093 Number of 7Xn 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

54, 2916, 88465, 3500117, 134515416, 4992838052, 189659424011, 7170730063393, 270475089293918, 10224494565608260, 386259141164549753, 14590174277869464225, 551225314435579230372, 20824003807957963946688
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 7 of A207088

Examples

			Some solutions for n=4
..0..1..1..0....1..0..0..1....0..1..1..1....0..0..1..0....0..0..1..1
..1..1..0..1....0..1..1..0....1..0..0..1....0..1..1..1....0..0..1..1
..1..0..0..1....1..0..1..1....0..1..0..0....0..0..1..0....0..0..1..1
..1..1..0..0....1..1..1..1....0..1..0..0....0..1..0..0....0..0..1..0
..0..1..0..1....1..1..0..1....0..1..0..0....0..1..1..0....0..0..1..0
..1..0..0..1....0..0..1..0....0..1..0..0....0..0..1..0....0..0..1..0
..1..1..0..1....0..1..1..1....0..1..0..0....0..1..0..0....0..0..1..0
		
Showing 1-10 of 11 results. Next