cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A210452 Number of integers k

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 3, 1, 3, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 5, 5, 4, 5, 5, 2, 4, 5, 5, 1, 5, 2, 6, 6, 5, 2, 6, 6, 6, 6, 6, 2, 6, 6, 6, 6, 5, 2, 6, 3, 5, 7, 7, 7, 7, 3, 7, 7, 7, 3, 7, 4, 6, 8, 8, 8, 8, 3, 8, 8, 6, 3, 8, 8, 6, 8, 8, 3, 8, 8, 8, 7, 6, 8, 8, 3, 8, 8, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 20 2013

Keywords

Comments

Conjecture: a(n)>0 for all n>4.
This implies the twin prime conjecture since k*p is not practical for any prime p>sigma(k)+1.
Zhi-Wei Sun also made the following conjectures:
(1) For each integer n>197, there is a practical number k
(2) For every n=9,10,... there is a practical number k
(3) For any integer n>26863, the interval [1,n] contains five consecutive integers m-2, m-1, m, m+1, m+2 with m-1 and m+1 both prime, and m-2, m, m+2, m*n all practical.

Examples

			a(11)=1 since 5 and 7 are twin primes, and 6 and 6*11 are both practical.
		

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
    a[n_]:=a[n]=Sum[If[PrimeQ[k-1]==True&&PrimeQ[k+1]==True&&pr[k]==True&&pr[k*n]==True,1,0],{k,1,n-1}]
    Do[Print[n," ",a[n]],{n,1,100}]

A210722 Number of ways to write n = (2-(n mod 2))p+q+2^k with p, q-1, q+1 all prime, and p-1, p+1, q all practical.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 4, 2, 4, 2, 4, 3, 4, 4, 3, 4, 5, 3, 8, 5, 8, 4, 5, 4, 5, 3, 5, 4, 4, 3, 9, 2, 12, 4, 9, 5, 7, 6, 7, 5, 5, 7, 10, 5, 13, 6, 10, 6, 8, 6, 7, 5, 1, 7, 7, 1, 10, 5, 8, 4, 9, 7, 8, 6, 3, 10, 6, 6, 10, 7, 7, 9, 11, 7, 10, 10, 5, 10, 7, 5, 10, 7, 4, 8, 8, 5, 11, 5, 8, 10, 7, 5, 12, 5
Offset: 1

Author

Zhi-Wei Sun, Jan 29 2013

Keywords

Comments

Conjecture: a(n)>0 except for n = 1,...,8, 10, 520, 689, 740.
Zhi-Wei Sun also guessed that any integer n>6 different from 407 can be written as p+q+F_k, where p is a prime with p-1 and p+1 practical, q is a practical number with q-1 and q+1 prime, and F_k (k>=0) is a Fibonacci number.

Examples

			a(1832)=1 since 1832=2*881+6+2^6 with 5, 7, 881 all prime and 6, 880, 882 all practical.
a(11969)=1 since 11969=127+11778+2^6 with 127, 11777, 11779 all prime and 126, 128, 11778 all practical.
		

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
    pp[k_]:=pp[k]=pr[Prime[k]-1]==True&&pr[Prime[k]+1]==True
    pq[n_]:=pq[n]=PrimeQ[n-1]==True&&PrimeQ[n+1]==True&&pr[n]==True
    a[n_]:=a[n]=Sum[If[pp[j]==True&&pq[n-2^k-(2-Mod[n,2])Prime[j]]==True,1,0],{k,0,Log[2,n]},{j,1,PrimePi[(n-2^k)/(2-Mod[n,2])]}]
    Do[Print[n," ",a[n]],{n,1,100}]

A211165 Number of ways to write n as the sum of a prime p with p-1 and p+1 both practical, a prime q with q+2 also prime, and a Fibonacci number.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 3, 4, 5, 3, 5, 3, 4, 4, 3, 4, 4, 4, 6, 6, 8, 6, 8, 3, 7, 3, 6, 5, 5, 5, 7, 6, 11, 8, 12, 4, 8, 4, 7, 8, 6, 8, 8, 7, 11, 9, 13, 5, 8, 4, 7, 7, 6, 6, 6, 5, 7, 6, 10, 4, 9, 3, 9, 7, 8, 7, 6, 6, 7, 4, 7, 4, 7, 4, 8, 8, 11, 7, 6, 6, 8, 5, 6, 4, 7, 2, 9, 7, 12, 8, 7, 4, 10, 5, 9, 5, 8, 5
Offset: 1

Author

Zhi-Wei Sun, Jan 30 2013

Keywords

Comments

Conjecture: a(n)>0 for all n>5.
This has been verified for n up to 300000.
Note that for n=406 we cannot represent n in the given way with q+1 practical.

Examples

			a(6)=a(7)=1 since 6=3+3+0 and 7=3+3+1 with 3 and 5 both prime, 2 and 4 both practical, 0 and 1 Fibonacci numbers.
		

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
    pp[k_]:=pp[k]=pr[Prime[k]-1]==True&&pr[Prime[k]+1]==True
    q[n_]:=q[n]=PrimeQ[n]==True&&PrimeQ[n+2]==True
    a[n_]:=a[n]=Sum[If[k!=2&&Fibonacci[k]
    				
Previous Showing 11-13 of 13 results.