Original entry on oeis.org
0, 0, 13, 29, 91, 123, 171, 219, 315, 363, 459, 539, 667, 763, 907, 971, 1163, 1291, 1435, 1579, 1835, 1931, 2171, 2347, 2539, 2699, 2987, 3131, 3515, 3739, 3931, 4171, 4555, 4715, 5099, 5291, 5675, 5963, 6395, 6587, 6971
Offset: 0
A209991
Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant in {0,1}.
Original entry on oeis.org
1, 13, 38, 79, 136, 209, 302, 407, 536, 681, 846, 1015, 1240, 1441, 1678, 1951, 2240, 2505, 2854, 3151, 3552, 3945, 4326, 4687, 5216, 5657, 6110, 6615, 7192, 7649, 8342, 8831, 9472, 10105, 10702, 11407, 12272, 12857, 13526, 14279, 15224
Offset: 0
-
a = 0; b = n; z1 = 40;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, 1}]
Table[c1[n, 1], {n, 0, z1}] (* A209991 *)
A209993
Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant in {-1,0,1}.
Original entry on oeis.org
1, 16, 45, 94, 159, 248, 349, 478, 623, 792, 973, 1182, 1423, 1672, 1933, 2238, 2559, 2888, 3261, 3630, 4063, 4504, 4925, 5374, 5935, 6456, 6957, 7534, 8159, 8728, 9453, 10062, 10767, 11480, 12141, 12942, 13855, 14584, 15325, 16174, 17183
Offset: 0
-
pillai:= proc(n) local i; add(igcd(i,n),i=1..n) end proc:
T:= 16: R:= 1,16:
for n from 2 to 50 do
v:= 1 + 4*n + 8*numtheory:-phi(n) + 4*pillai(n);
T:= T + v;
R:= R,T;
od:
R; # Robert Israel, Jan 07 2024
-
a = 1; b = n; z1 = 40;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, 1}]
Table[c1[n, 1], {n, 0, z1}] (* A209992 *)
A209994
Number of 2 X 2 matrices with all elements in {1,2,...,n} and determinant in {-1,0,1}.
Original entry on oeis.org
0, 1, 10, 31, 60, 105, 154, 223, 300, 393, 490, 607, 748, 889, 1034, 1215, 1404, 1593, 1818, 2031, 2300, 2569, 2810, 3071, 3436, 3753, 4042, 4399, 4796, 5129, 5610, 5967, 6412, 6857, 7242, 7759, 8380, 8809, 9242, 9775, 10460
Offset: 0
-
a = 1; b = n; z1 = 40;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, -m, m}]
Table[c1[n, 1], {n, 0, z1}] (* A209994 *)
A209995
Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant in {0,1,...,n}.
Original entry on oeis.org
1, 13, 50, 120, 244, 410, 681, 981, 1431, 1948, 2623, 3315, 4373, 5323, 6588, 8009, 9706, 11290, 13535, 15503, 18233, 20912, 23879, 26725, 30910, 34443, 38556, 42887, 48041, 52519, 58888, 63994, 70647, 77056, 83981, 91064, 100373
Offset: 0
-
a = 0; b = n; z1 = 40;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
Table[c1[n, n], {n, 0, z1}] (* A209995 *)
Original entry on oeis.org
0, 0, 1, 8, 16, 51, 59, 83, 99, 123, 159, 199, 215, 263, 287, 359, 391, 455, 479, 551, 623, 671, 711, 799, 831, 991, 1039, 1111, 1159, 1271, 1343, 1463, 1527, 1607, 1671, 1887, 1935, 2079, 2151, 2247, 2391
Offset: 0
A211069
Number of 2 X 2 matrices having all terms in {1,...,n} and determinant in [-n,n].
Original entry on oeis.org
1, 14, 57, 150, 309, 574, 921, 1444, 2091, 2952, 3919, 5314, 6709, 8534, 10603, 13102, 15593, 18962, 22133, 26332, 30569, 35346, 40097, 46690, 52553, 59394, 66603, 75094, 82833, 93282, 102181, 113422, 124411, 136412, 148613
Offset: 1
-
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, -n, m}]
Table[c1[n, n], {n, 1, z1}] (* A211069 *)
A211070
Number of 2 X 2 matrices having all terms in {1,...,n} and determinant d satisfying -n < d < n.
Original entry on oeis.org
1, 10, 43, 118, 263, 474, 831, 1258, 1893, 2652, 3685, 4748, 6375, 7918, 9931, 12216, 15015, 17654, 21395, 24726, 29253, 33822, 39011, 43906, 50995, 57210, 64431, 71968, 81075, 88962, 100159, 109346, 121107, 132636, 145097
Offset: 1
-
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, -n, m}]
Table[c1[n, n - 1] - c1[n, -n], {n, 1, z1}] (* A211070 *)
A211147
Number of 2 X 2 matrices having all terms in {-n,...,0,...,n} and nonnegative determinant.
Original entry on oeis.org
1, 57, 377, 1345, 3553, 7737, 14937, 26177, 42945, 66681, 99193, 142209, 198241, 269049, 357593, 466433, 598401, 756281, 944057, 1164289, 1421601, 1719161, 2061081, 2451329, 2895489, 3396729, 3960569, 4591937, 5296289, 6077881
Offset: 0
-
a = -n; b = n; z1 = 30;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
Table[c1[n, 2 n^2], {n, 0, z1}]
A281550
Number of 2 X 2 matrices with all elements in 0..n such that the sum of the elements is prime.
Original entry on oeis.org
0, 10, 46, 114, 234, 458, 826, 1370, 2090, 3010, 4174, 5658, 7534, 9930, 12954, 16662, 21074, 26242, 32246, 39182, 47186, 56386, 66874, 78798, 92290, 107434, 124282, 142942, 163550, 186266, 211250, 238626, 268526, 301134, 336610, 375086, 416678, 461454, 509434, 560662, 615182, 673106
Offset: 0
For n = 4, a few of the possible matrices are [0,4;2,1], [0,4;3,0], [0,4;3,4], [0,4;4,3], [1,0;0,1], [1,0;0,2], [1,0;0,4], [1,0;1,0], [1,0;1,1], [1,0;1,3], [2,2;3,0], [2,2;3,4], [2,2;4,3], [2,3;0,0], [2,3;0,2], [3,4;3,3], [3,4;4,0], [3,4;4,2], [4,0;0,1], [4,0;0,3], [4,0;1,0], ... There are 234 possibilities.
Here each of the matrices M is defined as M = [a,b;c,d] where a = M[1][1], b = M[1][2], c = M[2][1], d = M[2][2]. So, a(4) = 234.
-
a(n)=my(X=Pol(vector(n+1,i,1))+O('x^(4*n)),Y=X^4,s); forprime(p=2,4*n, s+=polcoeff(Y,p)); s \\ Charles R Greathouse IV, Feb 15 2017
-
from sympy import isprime
def t(n):
s=0
for a in range(0, n+1):
for b in range(0, n+1):
for c in range(0, n+1):
for d in range(0, n+1):
if isprime(a+b+c+d)==True:
s+=1
return s
for i in range(0, 201):
print(str(i)+" "+str(t(i)))
Comments