cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-105 of 105 results.

A211647 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2<=3n.

Original entry on oeis.org

0, 1, 4, 7, 11, 17, 23, 32, 38, 48, 60, 66, 78, 87, 102, 114, 121, 139, 157, 169, 178, 196, 214, 232, 241, 263, 284, 296, 314, 329, 359, 371, 386, 410, 434, 452, 471, 495, 516, 540, 555, 582, 612, 630, 651, 678, 702, 729, 738, 772, 805, 829, 853, 871
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 <= 3 n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]  (* A211647 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211648 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2=3n.

Original entry on oeis.org

0, 1, 3, 3, 1, 0, 3, 6, 3, 4, 6, 6, 3, 0, 6, 6, 1, 6, 12, 6, 0, 0, 12, 12, 3, 7, 6, 12, 6, 0, 12, 6, 3, 9, 6, 12, 4, 0, 12, 12, 6, 6, 18, 18, 6, 0, 12, 12, 3, 7, 15, 15, 0, 0, 12, 12, 6, 15, 18, 6, 6, 0, 18, 24, 1, 12, 15, 18, 6, 0, 12, 12, 12, 12, 18, 15, 6, 0, 24, 18, 0, 13, 18
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 == 3 n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 100]]  (* A211648 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211652 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^4

Original entry on oeis.org

0, 1, 7, 22, 50, 95, 161, 253, 374, 528, 721, 955, 1236, 1567, 1953, 2396, 2902, 3475, 4117, 4837, 5634, 6516, 7485, 8545, 9700, 10956, 12316, 13783, 15365, 17062, 18880, 20821, 22892, 25096, 27437, 29921, 32548, 35324, 38256, 41345
Offset: 0

Views

Author

Clark Kimberling, Apr 19 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^4 < x^4 + y^4, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A211652 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211653 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^4>x^4+y^4.

Original entry on oeis.org

0, 0, 1, 5, 14, 30, 55, 90, 138, 201, 279, 376, 492, 630, 791, 979, 1194, 1438, 1715, 2022, 2366, 2745, 3163, 3622, 4124, 4669, 5260, 5900, 6587, 7327, 8120, 8970, 9876, 10841, 11867, 12954, 14108, 15329, 16616, 17974, 19405, 20907, 22486
Offset: 0

Views

Author

Clark Kimberling, Apr 19 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^4 > x^4 + y^4, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]]    (* A211653 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A182195 Numbers k for which no numbers w,x,y, all in {1,...,k}, satisfy w^2 + x^2 + y^2 = 2k.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 10, 14, 16, 20, 26, 29, 30, 32, 40, 46, 50, 56, 62, 64, 65, 74, 78, 80, 94, 104, 110, 116, 120, 126, 128, 142, 158, 160, 170, 174, 184, 190, 200, 206, 222, 224, 238, 248, 254, 256, 260, 270, 286, 296, 302, 312, 318, 320, 334, 350, 366
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 == 2 n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 400]]    (* A211649 *)
    -1 + Flatten[Position[%, 0]]  (* this sequence *)
    (* Peter J. C. Moses, Apr 13 2012 *)
Previous Showing 101-105 of 105 results.