cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 105 results. Next

A211631 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w^2>x^2+y^2.

Original entry on oeis.org

0, 0, 8, 40, 104, 208, 384, 624, 952, 1384, 1920, 2584, 3368, 4304, 5416, 6696, 8160, 9808, 11680, 13784, 16120, 18696, 21552, 24672, 28064, 31752, 35768, 40128, 44808, 49816, 55200, 60952, 67112, 73664, 80624, 88032, 95848, 104120
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{u, _Integer}},
       Module[{s = 0}, (Do[If[w^2 > x^2 + y^2,
             s = s + 1], {w, #}, {x, #}, {y, #}] &[
          Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];
    Map[t[#] &, Range[0, 50]]  (* A211631 *)
    %/8                        (* integers *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211632 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and 2w^2>x^2+y^2.

Original entry on oeis.org

0, 0, 24, 88, 224, 448, 776, 1224, 1840, 2640, 3624, 4840, 6304, 8016, 10008, 12328, 14976, 17952, 21336, 25112, 29296, 33920, 39016, 44568, 50640, 57264, 64440, 72168, 80496, 89456, 99032, 109256, 120208, 131840, 144168, 157288
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{u, _Integer}},
       Module[{s = 0}, (Do[If[2 w^2 > x^2 + y^2,
             s = s + 1], {w, #}, {x, #}, {y, #}] &[
          Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];
    Map[t[#] &, Range[0, 50]]  (* A211632 *)
    %/8                        (* integers *)

A211633 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2>2x^2+2y^2.

Original entry on oeis.org

0, 0, 0, 8, 32, 80, 160, 264, 416, 624, 864, 1176, 1552, 2000, 2528, 3144, 3856, 4640, 5552, 6584, 7712, 8960, 10352, 11880, 13520, 15328, 17296, 19416, 21712, 24176, 26832, 29640, 32672, 35904, 39312, 42968, 46816, 50896, 55184, 59736
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{u, _Integer}},
       Module[{s = 0}, (Do[If[w^2 > 2 x^2 + 2 y^2,
             s = s + 1], {w, #}, {x, #}, {y, #}] &[
          Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];
    Map[t[#] &, Range[0, 50]]  (* A211633 *)
    %/8                        (* integers *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211640 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2>n.

Original entry on oeis.org

0, 1, 8, 26, 63, 124, 212, 339, 508, 722, 993, 1321, 1717, 2186, 2727, 3358, 4079, 4893, 5809, 6833, 7974, 9229, 10613, 12132, 13786, 15587, 17532, 19635, 21904, 24335, 26940, 29731, 32708, 35871, 39235, 42800, 46578, 50575, 54785, 59232
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 > n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]     (* A211640 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211641 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2>=n.

Original entry on oeis.org

0, 1, 8, 27, 63, 124, 215, 339, 508, 725, 993, 1324, 1718, 2186, 2733, 3358, 4079, 4896, 5812, 6836, 7974, 9235, 10616, 12132, 13789, 15587, 17538, 19639, 21904, 24341, 26946, 29731, 32708, 35877, 39238, 42806, 46581, 50575, 54794, 59232
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 >= n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]     (* A211641 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211642 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2<2n.

Original entry on oeis.org

0, 0, 1, 1, 4, 7, 10, 11, 17, 20, 26, 32, 35, 38, 48, 54, 60, 66, 75, 78, 87, 96, 105, 114, 120, 127, 139, 145, 157, 169, 178, 184, 196, 202, 217, 232, 238, 244, 263, 278, 284, 296, 308, 314, 329, 347, 365, 371, 383, 389, 410, 428, 434, 452, 467, 477
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 < 2 n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]     (* A211642 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211643 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2<=2n.

Original entry on oeis.org

0, 0, 1, 4, 4, 7, 11, 17, 17, 23, 26, 35, 38, 44, 48, 60, 60, 69, 78, 87, 87, 102, 108, 120, 121, 133, 139, 157, 163, 169, 178, 196, 196, 214, 220, 238, 241, 256, 266, 284, 284, 299, 314, 329, 332, 359, 365, 383, 386, 401, 410, 434, 440, 458, 471, 495
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

Is A211643 a subsequence of A211639?
For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 <= 2 n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]   (* A211643 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211644 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2>2n.

Original entry on oeis.org

0, 1, 7, 23, 60, 118, 205, 326, 495, 706, 974, 1296, 1690, 2153, 2696, 3315, 4036, 4844, 5754, 6772, 7913, 9159, 10540, 12047, 13703, 15492, 17437, 19526, 21789, 24220, 26822, 29595, 32572, 35723, 39084, 42637, 46415, 50397, 54606, 59035
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 > 2 n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]     (* A211644 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211645 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2>=2n.

Original entry on oeis.org

0, 1, 7, 26, 60, 118, 206, 332, 495, 709, 974, 1299, 1693, 2159, 2696, 3321, 4036, 4847, 5757, 6781, 7913, 9165, 10543, 12053, 13704, 15498, 17437, 19538, 21795, 24220, 26822, 29607, 32572, 35735, 39087, 42643, 46418, 50409, 54609, 59041
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 >= 2 n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]     (* A211645 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211646 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2<3n.

Original entry on oeis.org

0, 0, 1, 4, 10, 17, 20, 26, 35, 44, 54, 60, 75, 87, 96, 108, 120, 133, 145, 163, 178, 196, 202, 220, 238, 256, 278, 284, 308, 329, 347, 365, 383, 401, 428, 440, 467, 495, 504, 528, 549, 576, 594, 612, 645, 678, 690, 717, 735, 765, 790, 814, 853, 871
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 < 3 n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]   (* A211646 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
Previous Showing 91-100 of 105 results. Next