cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A213695 Half the number of (n+1)X(n+1) symmetric 0..6 arrays with no 2X2 subblock summing to 12.

Original entry on oeis.org

159, 45892, 84059234, 976919547736, 72037480156866493, 33704464361612549676417, 100056407652480771734417515110
Offset: 1

Views

Author

R. H. Hardin Jun 18 2012

Keywords

Comments

Column 6 of A213697

Examples

			Some solutions for n=4
..2..3..5..0..0....4..2..3..3..5....0..5..2..5..0....2..4..1..0..0
..3..2..1..1..2....2..0..3..1..5....5..1..2..2..6....4..1..0..3..6
..5..1..0..2..3....3..3..5..4..4....2..2..3..1..4....1..0..0..0..4
..0..1..2..0..0....3..1..4..4..3....5..2..1..3..1....0..3..0..4..5
..0..2..3..0..5....5..5..4..3..6....0..6..4..1..0....0..6..4..5..1
		

A213696 Half the number of (n+1)X(n+1) symmetric 0..7 arrays with no 2X2 subblock summing to 14.

Original entry on oeis.org

240, 105856, 342943680, 8159542628448, 1425762604012263360, 1829651398830137742302620
Offset: 1

Views

Author

R. H. Hardin Jun 18 2012

Keywords

Comments

Column 7 of A213697

Examples

			Some solutions for n=4
..0..0..7..0..4....4..0..7..0..1....0..2..3..7..0....0..4..1..2..0
..0..1..5..1..7....0..1..2..4..2....2..1..2..3..2....4..3..3..4..5
..7..5..4..7..2....7..2..6..1..4....3..2..7..5..1....1..3..0..5..2
..0..1..7..4..4....0..4..1..7..6....7..3..5..1..0....2..4..5..1..5
..4..7..2..4..3....1..2..4..6..2....0..2..1..0..7....0..5..2..5..0
		

A213703 Half the number of 8X8 0..n symmetric arrays with no 2X2 subblock summing to 2n.

Original entry on oeis.org

1220409, 109492322533385, 22678299640600736258, 181744271406372884215557, 251417716503635583550380605, 100056407652480771734417515110
Offset: 1

Views

Author

R. H. Hardin Jun 18 2012

Keywords

Comments

Row 7 of A213697

Examples

			Some solutions for n=4
..1..3..0..2..3..4..4..3....3..0..4..4..0..2..3..0....3..4..3..0..0..1..2..3
..3..2..1..3..3..4..3..4....0..4..1..1..2..1..0..0....4..3..4..2..3..0..1..4
..0..1..0..0..3..0..0..0....4..1..1..4..2..4..4..3....3..4..3..3..1..3..0..2
..2..3..0..3..1..0..2..2....4..1..4..3..2..3..0..4....0..2..3..2..1..4..2..3
..3..3..3..1..4..4..3..4....0..2..2..2..2..0..2..1....0..3..1..1..3..1..0..1
..4..4..0..0..4..2..4..1....2..1..4..3..0..4..0..1....1..0..3..4..1..4..2..3
..4..3..0..2..3..4..1..1....3..0..4..0..2..0..2..4....2..1..0..2..0..2..2..3
..3..4..0..2..4..1..1..0....0..0..3..4..1..1..4..0....3..4..2..3..1..3..3..4
		
Previous Showing 11-13 of 13 results.