A219146
Unchanging value maps: number of 5Xn binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 5Xn array.
Original entry on oeis.org
1, 142, 1400, 11385, 101600, 872437, 7640541, 66900727, 587994968, 5165646362, 45386314917, 398705236904, 3502774773711, 30774842966797
Offset: 1
Some solutions for n=3
..0..0..0....1..0..0....1..1..1....1..0..0....1..0..0....1..0..0....1..0..0
..1..0..1....1..0..0....1..0..1....1..0..0....0..0..0....1..0..0....0..0..0
..0..0..0....1..0..1....1..0..0....0..0..0....0..0..1....0..0..0....0..0..0
..1..0..0....0..0..1....0..0..0....1..0..1....1..0..1....0..0..0....0..0..1
..1..0..0....0..0..0....1..0..0....1..1..1....1..1..1....1..1..1....0..0..0
A219147
Unchanging value maps: number of 6Xn binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 6Xn array.
Original entry on oeis.org
1, 405, 5949, 73136, 989947, 12867295, 170792866, 2268088205, 30263321279, 403675695558, 5385766437559, 71840547896222, 958386976026868, 12786233698435986, 170595408884312447, 2276122067209739706
Offset: 1
Some solutions for n=3
..1..0..0....0..0..0....1..0..1....1..0..1....1..0..0....1..0..0....1..0..1
..0..0..0....1..0..0....0..0..1....0..0..1....0..0..1....1..0..1....0..0..1
..1..0..1....0..0..1....1..0..0....0..0..0....1..0..1....1..0..0....1..0..1
..0..1..0....1..0..0....1..0..0....1..0..0....1..0..1....1..0..0....1..0..1
..0..0..0....0..0..1....0..0..1....1..0..0....0..0..1....0..0..0....0..0..1
..0..0..0....0..0..0....0..0..1....1..0..0....1..0..0....1..0..1....0..0..1
A219148
Unchanging value maps: number of 7Xn binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 7Xn array.
Original entry on oeis.org
1, 1157, 25277, 472638, 9702349, 191707377, 3862325048, 78006637065, 1583568237267, 32151936434405
Offset: 1
Some solutions for n=3
..1..1..1....1..0..0....0..0..1....1..0..0....1..1..1....0..0..0....0..0..1
..1..0..1....1..0..1....0..0..1....0..0..0....1..0..1....0..1..0....0..0..0
..1..0..0....0..0..1....0..0..1....0..0..1....0..0..0....1..1..1....1..0..0
..0..0..1....1..0..0....0..0..0....1..0..1....1..0..0....1..1..1....0..0..0
..1..0..0....1..0..0....1..0..0....0..0..0....1..0..1....0..0..0....1..0..0
..0..0..0....0..0..1....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0
..1..0..0....0..0..1....1..0..0....0..0..0....1..0..0....0..0..0....0..0..1
Comments