A222910
Number of 5Xn 0..3 arrays with no more than floor(5Xn/2) elements unequal to at least one horizontal or antidiagonal neighbor, with new values introduced in row major 0..3 order.
Original entry on oeis.org
51, 411, 4909, 180203, 2117424, 115414184, 1616042692, 101812249660, 1647125896526, 116484133514908, 2045481314796291, 151436398227691009, 2739472417059940802, 205949331213920597815
Offset: 1
Some solutions for n=3
..0..0..1....0..1..1....0..0..1....0..0..0....0..1..2....0..0..0....0..0..1
..0..0..0....1..1..1....2..3..3....0..0..0....2..1..1....0..0..0....2..0..0
..0..0..0....1..1..0....3..3..3....1..0..2....0..1..1....1..2..0....0..3..3
..1..1..1....1..1..2....3..3..0....1..0..0....1..1..1....2..2..2....3..3..3
..1..1..1....1..1..1....3..3..3....0..0..0....1..1..1....2..2..2....3..3..3
A222911
Number of 6Xn 0..3 arrays with no more than floor(6Xn/2) elements unequal to at least one horizontal or antidiagonal neighbor, with new values introduced in row major 0..3 order.
Original entry on oeis.org
187, 2522, 119393, 4320431, 213112150, 10615237672, 577820456398, 33236182725503, 2041367121617874, 132252751824700275
Offset: 1
Some solutions for n=3
..0..0..0....0..0..1....0..0..1....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..1..1....0..0..1....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....2..0..1....1..1..1....0..0..0....0..0..0....0..0..1
..0..0..0....0..0..0....0..0..0....1..1..1....0..1..2....1..2..0....1..1..1
..1..1..0....1..0..1....0..0..0....2..1..0....1..1..3....0..1..1....1..2..2
..2..1..3....1..1..1....0..0..0....0..2..2....3..0..1....0..1..1....1..3..3
A222912
Number of 7Xn 0..3 arrays with no more than floor(7Xn/2) elements unequal to at least one horizontal or antidiagonal neighbor, with new values introduced in row major 0..3 order.
Original entry on oeis.org
715, 15919, 759891, 105327353, 4854855483, 997770825049, 51666240687220, 11720702848290810, 667162032011395790, 166939045536469920335
Offset: 1
Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..1..1....0..0..1....0..0..1....0..0..0....0..0..1....0..1..0
..1..2..1....2..1..1....1..2..0....1..0..0....1..2..2....2..2..0....2..1..1
..2..0..0....3..0..0....2..2..3....2..0..0....3..1..1....2..2..0....1..1..1
..3..0..3....0..0..1....3..3..1....3..0..0....0..1..2....2..3..1....3..2..2
Comments