cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A223551 Petersen graph (3,1) coloring a rectangular array: number of n X n 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

1, 27, 3249, 1795473, 4715559621, 59043582882099, 3541866135681593043, 1020092567883788131348995, 1412857454503152706541498629089, 9420448274769727958157865214329990383
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Diagonal of A223556

Examples

			Some solutions for n=3
..0..1..4....0..3..4....0..3..4....0..3..0....0..3..4....0..2..0....0..3..4
..0..3..0....5..3..4....5..3..0....5..3..4....5..3..4....0..2..1....4..5..4
..0..2..1....4..5..2....4..3..4....4..3..0....0..3..0....5..4..1....4..1..2
		

A223552 Petersen graph (3,1) coloring a rectangular array: number of n X 4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

27, 1089, 44217, 1795473, 72906921, 2960456193, 120212193177, 4881332621169, 198211242377097, 8048559615522273, 326819564358379641, 13270825184845208913, 538874719548919491177, 21881530298548175795649
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2013

Keywords

Comments

Column 4 of A223556.

Examples

			Some solutions for n=3:
..0..2..0..2....0..1..2..5....0..2..0..2....0..2..1..4....0..1..0..1
..0..1..0..2....2..1..4..5....1..2..0..2....5..4..5..2....2..1..2..1
..4..1..0..2....4..3..4..5....5..3..5..4....5..2..1..0....4..1..4..3
		

Crossrefs

Cf. A223556.

Formula

Empirical: a(n) = 41*a(n-1) - 16*a(n-2).
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: 9*x*(3 - 2*x) / (1 - 41*x + 16*x^2).
a(n) = 3*sqrt(3/11)*2^(-4-n)*((41-7*sqrt(33))^n*(-1+sqrt(33)) + (1+sqrt(33))*(41+7*sqrt(33))^n).
(End)

A223553 Petersen graph (3,1) coloring a rectangular array: number of n X 5 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

81, 6939, 609309, 53599905, 4715559621, 414863325945, 36498667573629, 3211064180380305, 282501632829717621, 24853807982558115945, 2186577702401491603629, 192369799106697718450305
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2013

Keywords

Comments

Column 5 of A223556.

Examples

			Some solutions for n=3:
..0..2..5..3..0....0..1..0..1..4....0..2..1..4..5....0..2..0..3..0
..0..2..5..2..1....0..1..2..5..3....0..2..1..4..1....0..2..0..2..5
..1..4..1..2..1....2..1..2..0..1....1..4..1..2..0....1..2..1..2..0
		

Crossrefs

Cf. A223556.

Formula

Empirical: a(n) = 95*a(n-1) - 626*a(n-2) + 720*a(n-3) for n>4.
Empirical g.f.: 9*x*(9 - 84*x + 90*x^2 + 116*x^3) / (1 - 95*x + 626*x^2 - 720*x^3). - Colin Barker, Aug 21 2018

A223554 Petersen graph (3,1) coloring a rectangular array: number of nX6 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

243, 44217, 8410671, 1609602003, 308267930115, 59043582882099, 11308909481307639, 2166053304537606339, 414875312906229086427, 79463200007529976606227, 15219994937262513427990431
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Column 6 of A223556

Examples

			Some solutions for n=3
..0..1..0..3..0..1....0..1..0..1..0..3....0..1..0..1..4..5....0..1..0..1..4..5
..0..1..0..1..4..1....0..1..0..3..0..3....0..1..2..5..4..1....0..1..2..5..2..5
..0..1..2..1..2..5....4..3..0..3..0..2....2..5..4..5..4..3....2..5..2..5..3..5
		

Formula

Empirical: a(n) = 229*a(n-1) -7630*a(n-2) +89386*a(n-3) -465129*a(n-4) +1124537*a(n-5) -1178896*a(n-6) +505856*a(n-7) -65536*a(n-8) for n>9

A223555 Petersen graph (3,1) coloring a rectangular array: number of nX7 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

729, 281763, 116124291, 48435199821, 20248676896077, 8468395670690901, 3541866135681593043, 1481382428937450207651, 619587781032925818024165, 259142468285816914838504985, 108386290103616110374877972691
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Column 7 of A223556

Examples

			Some solutions for n=3
..0..1..0..3..0..3..4....0..1..0..3..5..4..1....0..1..0..1..0..3..5
..0..1..0..2..0..3..0....0..1..0..2..1..4..5....0..1..0..2..5..4..1
..0..3..0..1..4..1..4....0..3..5..2..5..4..3....0..3..0..3..5..2..1
		

Formula

Empirical: a(n) = 579*a(n-1) -77474*a(n-2) +4635156*a(n-3) -154699059*a(n-4) +3198735625*a(n-5) -43344055546*a(n-6) +396489063452*a(n-7) -2477765391092*a(n-8) +10544713088920*a(n-9) -29940917775104*a(n-10) +54099319050624*a(n-11) -56116354684928*a(n-12) +25386144890880*a(n-13) for n>15

A223557 Petersen graph (3,1) coloring a rectangular array: number of 2 X n 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

6, 27, 171, 1089, 6939, 44217, 281763, 1795473, 11441259, 72906921, 464583411, 2960456193, 18864859707, 120212193177, 766025913411, 4881332621169, 31105224694539, 198211242377097, 1263057797861523, 8048559615522273
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2013

Keywords

Comments

Row 2 of A223556.

Examples

			Some solutions for n=3:
..0..1..0....0..3..4....0..1..0....0..1..0....0..1..0....0..2..1....0..3..0
..0..2..5....4..5..2....0..3..0....0..2..1....0..1..0....1..2..1....4..1..4
		

Crossrefs

Cf. A223556.

Formula

Empirical: a(n) = 7*a(n-1) - 4*a(n-2) for n>3.
Empirical g.f.: 3*x*(2 - x)*(1 - 2*x) / (1 - 7*x + 4*x^2). - Colin Barker, Aug 21 2018

A223558 Petersen graph (3,1) coloring a rectangular array: number of 3 X n 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

36, 243, 3249, 44217, 609309, 8410671, 116124291, 1603350909, 22137868197, 305663255847, 4220371688499, 58271764766661, 804573346481541, 11108952552823119, 153384184751908707, 2117815160357837997
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2013

Keywords

Comments

Row 3 of A223556.

Examples

			Some solutions for n=3:
..0..2..0....0..3..0....0..1..4....0..3..4....0..3..5....0..1..2....0..1..0
..5..2..5....5..2..1....2..5..3....0..3..4....5..4..3....2..5..4....4..3..5
..5..3..5....5..4..3....4..5..2....0..3..4....3..0..3....2..1..4....0..3..4
		

Crossrefs

Cf. A223556.

Formula

Empirical: a(n) = 17*a(n-1) - 47*a(n-2) + 41*a(n-3) - 10*a(n-4) for n>6.
Empirical g.f.: 9*x*(4 - 41*x + 90*x^2 - 119*x^3 + 80*x^4 - 18*x^5) / ((1 - x)*(1 - 16*x + 31*x^2 - 10*x^3)). - Colin Barker, Aug 21 2018

A223559 Petersen graph (3,1) coloring a rectangular array: number of 4Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

216, 2187, 61731, 1795473, 53599905, 1609602003, 48435199821, 1458216189189, 43906852932615, 1322067596579721, 39808646082180639, 1198675626234407289, 36093255426614169063, 1086802077561066049509, 32724639445955516294571
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Row 4 of A223556

Examples

			Some solutions for n=3
..0..3..5....0..1..2....0..3..4....0..1..0....0..1..4....0..1..4....0..3..5
..5..3..0....4..1..2....0..1..2....4..1..4....4..5..2....4..1..4....5..2..5
..4..1..0....2..5..4....4..1..2....2..5..2....4..5..2....4..1..4....5..4..5
..2..1..4....4..5..4....2..5..2....2..0..3....3..0..2....4..1..0....1..2..5
		

Formula

Empirical: a(n) = 48*a(n-1) -663*a(n-2) +4174*a(n-3) -13683*a(n-4) +22624*a(n-5) -11071*a(n-6) -19190*a(n-7) +27600*a(n-8) -3924*a(n-9) -10466*a(n-10) +4220*a(n-11) +556*a(n-12) -224*a(n-13) for n>16

A223560 Petersen graph (3,1) coloring a rectangular array: number of 5Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

1296, 19683, 1172889, 72906921, 4715559621, 308267930115, 20248676896077, 1332349841732589, 87722782781246325, 5776909246026951831, 380457710460248943159, 25056802652197918165101, 1650241268196778787267997
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Row 5 of A223556

Examples

			Some solutions for n=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..2..0....0..1..0....0..2..0
..0..1..4....0..2..5....0..1..0....0..3..0....0..3..4....0..1..2....0..2..1
..4..5..4....1..2..0....2..1..2....4..3..0....0..1..0....2..1..4....1..4..3
..2..1..0....0..1..4....2..5..3....0..1..4....4..1..4....4..3..0....1..4..5
..4..3..5....4..1..0....2..0..3....4..1..2....0..1..0....5..2..0....5..3..5
		

Formula

Empirical: a(n) = 138*a(n-1) -6973*a(n-2) +184648*a(n-3) -2923158*a(n-4) +28742148*a(n-5) -164862328*a(n-6) +323303482*a(n-7) +2664572505*a(n-8) -23705019366*a(n-9) +69355645652*a(n-10) +70054378686*a(n-11) -1192186614062*a(n-12) +3436488705480*a(n-13) -144865949345*a(n-14) -25285605346206*a(n-15) +67796388682571*a(n-16) -36846019769990*a(n-17) -198206747323771*a(n-18) +539872407671898*a(n-19) -524423165469667*a(n-20) -173098284258962*a(n-21) +1095810256049880*a(n-22) -1391226239663130*a(n-23) +883819140137974*a(n-24) -205123488401360*a(n-25) -109599889287411*a(n-26) +100027213354804*a(n-27) -24361114004738*a(n-28) -4709924309874*a(n-29) +4076735604787*a(n-30) -668752166416*a(n-31) -125749417451*a(n-32) +60592095948*a(n-33) -5244227851*a(n-34) -1102919206*a(n-35) +264396239*a(n-36) -12021054*a(n-37) -1712600*a(n-38) +222192*a(n-39) -8748*a(n-40) +108*a(n-41) for n>45

A223561 Petersen graph (3,1) coloring a rectangular array: number of 6Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

7776, 177147, 22284891, 2960456193, 414863325945, 59043582882099, 8468395670690901, 1218666102798243879, 175642608583999726713, 25331295128141837865681, 3654268425473611746796515
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Row 6 of A223556

Examples

			Some solutions for n=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0
..0..3..0....0..1..0....0..3..0....0..3..0....0..3..0....0..3..0....0..1..0
..0..1..0....0..2..1....0..3..5....0..3..4....0..1..2....0..1..4....0..1..0
..0..1..0....0..2..0....0..3..0....0..3..4....2..0..2....2..1..0....2..1..0
..0..1..4....0..3..4....0..3..0....4..3..5....2..5..3....0..2..0....0..2..0
..2..5..3....0..3..0....5..2..1....5..4..1....3..4..3....0..3..0....0..2..5
		
Showing 1-10 of 11 results. Next