cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A225935 Number of conjugacy classes in adjoint twisted Chevalley group 2E6(q) as q runs through the prime powers.

Original entry on oeis.org

266, 1389, 6102, 20934, 141262, 306062, 607533, 1968990, 5266030, 17975982, 25748166, 49814254, 155087838, 254757166, 402919341, 616857990, 918109966, 1109537246, 2639036782, 4871910150, 6475547950, 11018764446, 14135789614, 22598970438, 42920560350
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225935(q) : return q^6 + q^5 + 2*q^4 + 4*q^3 + [11*q^2 + 11*q + 16, 12*q^2 + 14*q + 30, 11*q^2 + 11*q + 15, 10*q^2 + 10*q + 14, 13*q^2 + 15*q + 34][q%6-1]

Formula

Let q be the n-th prime power.
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 11q^2 + 11q + 16 if q == 1 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 12q^2 + 14q + 30 if q == 2 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 11q^2 + 11q + 15 if q == 3 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 10q^2 + 10q + 14 if q == 4 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 13q^2 + 15q + 34 if q == 5 (mod 6).

A225936 Number of conjugacy classes in simply connected Chevalley group E_7(q) as q runs through the prime powers.

Original entry on oeis.org

531, 5052, 24553, 107833, 999759, 2447517, 5494392, 21711067, 68562129, 287617189, 437995549, 946912755, 3567919999, 6370211253, 10880553708, 17891119105, 28464383127, 35505127221, 97650322329, 199757104357, 278459342139, 517897029319, 692671751805
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225936(q) : return q^7 + q^6 + 2*q^5 + (4*q^4 + 10*q^3 + 15*q^2 + 25*q + 21 if q%2==0 else 7*q^4 + 17*q^3 + 35*q^2 + 70*q + 99 if q%3==0 else 7*q^4 + 17*q^3 + 35*q^2 + 71*q + 103)

Formula

Let q be the n-th prime power. Then, a(n) is
q^7 + q^6 + 2q^5 + 4q^4 + 10q^3 + 15q^2 + 25q + 21 if q == 0 (mod 2);
q^7 + q^6 + 2q^5 + 7q^4 + 17q^3 + 35q^2 + 70q + 99 if q == 0 (mod 3);
q^7 + q^6 + 2q^5 + 7q^4 + 17q^3 + 35q^2 + 71q + 103 otherwise.
Previous Showing 11-12 of 12 results.