A379048 Irregular triangular array: row n is the linear recurrence signature of F(i)^n - F(i-1)^n, where F = A000045 (Fibonacci numbers).
1, 1, 2, 2, -1, 3, 6, -3, -1, 4, 19, 4, -1, 8, 40, -60, -40, 8, 1, 13, 104, -260, -260, 104, 13, -1, 21, 273, -1092, -1820, 1092, 273, -21, -1, 33, 747, -3894, -16270, -3894, 747, 33, -1, 55, 1870, -19635, -85085, 136136, 85085, -19635, -1870, 55, 1, 89
Offset: 1
Programs
-
Mathematica
z = 25; w[i_] := Fibonacci[i]; t[p_] := Table[w[i]^p - w[i - 1]^p, {i, 1, z}]; Column[Table[FindLinearRecurrence[t[p]], {p, 1, 12}]] (* array *) Flatten[Table[FindLinearRecurrence[t[p]], {p, 1, 12}]] (* sequence *)
Formula
First 10 rows:
1 1
2 2 -1
3 6 -3 -1
4 19 4 -1
8 40 -60 -40 8 1
13 104 -260 -260 104 13 -1
21 273 -1092 -1820 1092 273 -21 -1
33 747 -3894 -16270 -3894 747 33 -1
55 1870 -19635 -85085 136136 85085 -19635 -1870 55 1
89 4895 -83215 -582505 1514513 1514513 -582505 -83215 4895 89 -1
Comments