A228665 Number of 6 X n binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.
32, 70, 2348, 11912, 203762, 1482892, 19236832, 166237206, 1899605260, 17848767224, 192044287042, 1879682471996, 19647967583440, 196172283670342, 2022115572124828, 20385597248657864, 208716533500704978, 2114033802192686572, 21573650422984183744, 219011665920930992374
Offset: 1
Examples
Some solutions for n=4: ..1..0..0..1....1..0..0..0....1..0..0..0....1..0..1..0....1..0..1..0 ..0..0..0..1....0..0..1..0....0..0..0..0....1..0..1..0....0..0..0..0 ..0..1..0..0....1..0..0..0....0..0..1..0....1..0..1..0....1..0..1..0 ..0..0..0..0....0..0..0..1....1..0..1..0....1..0..0..0....0..0..0..0 ..0..0..0..1....0..1..0..1....0..0..1..0....0..0..0..0....1..0..1..0 ..0..1..0..1....0..1..0..0....1..0..0..0....0..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 6 of A228660.
Formula
Empirical: a(n) = 4*a(n-1) +88*a(n-2) -138*a(n-3) -1388*a(n-4) +1332*a(n-5) +5911*a(n-6) -2920*a(n-7) -8340*a(n-8) +816*a(n-9) +2232*a(n-10).
Comments