cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A382242 Decimal expansion of Gamma(1/4)^2/(8*sqrt(2*Pi)).

Original entry on oeis.org

6, 5, 5, 5, 1, 4, 3, 8, 8, 5, 7, 3, 0, 2, 9, 9, 5, 2, 6, 1, 6, 2, 0, 9, 8, 9, 7, 4, 7, 2, 7, 7, 9, 8, 5, 3, 4, 2, 0, 6, 8, 8, 7, 3, 7, 8, 5, 7, 9, 0, 5, 7, 9, 0, 7, 0, 4, 2, 0, 5, 4, 2, 5, 9, 5, 0, 1, 9, 7, 6, 4, 6, 7, 6, 7, 6, 0, 3, 5, 6, 2, 5, 5, 7, 5, 7, 3, 8, 8, 3, 2, 4, 0, 3, 5, 7, 2, 7, 3, 3, 6, 1, 5, 3, 3, 9, 3, 8, 1, 6, 7, 9, 4, 5, 8
Offset: 0

Views

Author

R. J. Mathar, Mar 19 2025

Keywords

Examples

			0.6555143885730299526162098974727798534...
		

Crossrefs

Programs

  • Maple
    Digits := 120 ; GAMMA(1/4)^2/8/sqrt(2*Pi) ; evalf(%) ;
  • Mathematica
    RealDigits[Gamma[1/4]^2/(8*Sqrt[2*Pi]), 10, 120][[1]] (* Amiram Eldar, Mar 20 2025 *)

Formula

Equals A068466^2 *A231863 /8.
Equals Product_{n>=1} (A005843(n)/A005408(n))^A034947(n).

A387213 Decimal expansion of Integral_{x>=0} sin(x) * sin(x^2) dx.

Original entry on oeis.org

4, 9, 1, 6, 9, 9, 6, 7, 7, 6, 9, 3, 8, 2, 1, 1, 1, 7, 7, 1, 6, 5, 4, 6, 2, 5, 4, 1, 6, 8, 9, 0, 8, 1, 0, 0, 2, 2, 1, 5, 1, 0, 2, 7, 1, 2, 6, 8, 7, 5, 5, 0, 7, 7, 2, 5, 5, 9, 0, 4, 8, 1, 7, 9, 1, 4, 7, 4, 5, 0, 7, 2, 2, 3, 7, 5, 6, 2, 9, 6, 3, 8, 1, 0, 1, 9, 1, 1, 8, 9, 9, 8, 7, 5, 7, 6, 4, 6, 6, 2, 9, 0, 2, 1, 1
Offset: 0

Views

Author

Amiram Eldar, Aug 22 2025

Keywords

Examples

			0.49169967769382111771654625416890810022151027126875...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Integrate[Sin[x]*Sin[x^2], {x, 0, Infinity}], 10, 120][[1]]
    (* or *)
    RealDigits[Sqrt[Pi/2] * (Cos[1/4] * FresnelC[1/Sqrt[2*Pi]] + Sin[1/4] * FresnelS[1/Sqrt[2*Pi]]), 10, 120][[1]]

Formula

Equals sqrt(Pi/2) * (cos(1/4) * FresnelC(1/sqrt(2*Pi)) + sin(1/4) * FresnelS(1/sqrt(2*Pi))), where FresnelC(x) and FresnelS(x) are the Fresnel integrals C(x) and S(x), respectively.
Equals Integral_{x=0..1/2} cos(x^2 - 1/4) dx.
Previous Showing 11-12 of 12 results.