cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A201508 Number of ways to place 8 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 0, 2, 7157, 1143638, 44031035, 771464278, 8219304992, 62114308624, 364798895986, 1765597908290, 7329246973785, 26849172347850, 88645482921449, 268042562131202, 751635857876290, 1974215715426992, 4896315981217168, 11542835604897814, 26008912447737323
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Formula

Explicit formula: n^16/40320 - n^14/288 + n^13/360 + 623*n^12/2880 - 41*n^11/120 - 5521*n^10/720 + 649*n^9/36 + 941767*n^8/5760 - 12485*n^7/24 - 577177*n^6/288 + 3102289*n^5/360 + 12378183*n^4/1120 - 1545219*n^3/20 + 1588751*n^2/120 + 581605*n/2 - 308806, n>=7.
G.f.: -x^4*(12*x^19 - 122*x^18 + 1130*x^17 - 6776*x^16 + 11180*x^15 + 33894*x^14 + 82772*x^13 - 1938093*x^12 + 7575029*x^11 - 10487057*x^10 - 11993287*x^9 + 70715064*x^8 - 109013258*x^7 + 41757444*x^6 + 331980470*x^5 + 173609451*x^4 + 25561181*x^3 + 1022241*x^2 + 7123*x + 2)/(x-1)^17.
a(n) = A232833(n,8). - R. J. Mathar, Apr 11 2024

A201510 Number of ways to place 9 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 2578, 1247116, 97284860, 2817340064, 44218721793, 457851259868, 3506596268191, 21355746900992, 108582220087480, 477032549147428, 1857084405493128, 6529640029479296, 21044674478336823, 62903854631232636, 176034055470126073, 464793685059669728
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Formula

Explicit formula: n^18/362880 - n^16/2016 + n^15/2520 + 349*n^14/8640 - 23*n^13/360 - 277*n^12/144 + 163*n^11/36 + 199529*n^10/3456 - 4381*n^9/24 - 313811*n^8/288 + 1622087*n^7/360 + 1073654363*n^6/90720 - 12207881*n^5/180 - 24979477*n^4/504 + 72278641*n^3/126 - 11491519*n^2/45 - 6271604*n/3 + 2530368, n>=8.
G.f.: x^5*(14*x^21 - 226*x^20 + 2514*x^19 - 15414*x^18 + 54363*x^17 - 241813*x^16 + 1440666*x^15 - 4412622*x^14 - 2699713*x^13 + 64333547*x^12 - 202456488*x^11 + 209746960*x^10 + 407620979*x^9 - 1743413585*x^8 + 2469587594*x^7 - 1465834094*x^6 - 9995512037*x^5 - 6126508561*x^4 - 1179686478*x^3 - 74030494*x^2 - 1198134*x - 2578)/(x-1)^19.
a(n) = A232833(n,9). - R. J. Mathar, Apr 11 2024
Previous Showing 11-12 of 12 results.