A234647 Primes of the form q(p) - 1, where p is a prime and q(.) is the strict partition function (A000009).
2, 11, 17, 37, 53, 103, 1259, 1609, 5119, 9791, 70487, 570077, 20792119, 281138047, 23515017983, 35692320959, 48626519093, 3626048321047, 27077619952639, 1651411233432319, 10743948315198451, 13378670620050079, 39413984631175423, 58553713102334907283, 145464242180631569963, 25408177717067357968543, 1374387931601409538722802926765483199, 20557774525717988142856527912112710143, 326033386646595458662191828888146112979, 27403889354101748193301659902924397784656229
Offset: 1
Keywords
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Maple
a(1) = 2 since 2 = q(5) - 1 with 2 and 5 both prime.
-
Mathematica
p[n_]:=A234615(n) Table[PartitionsQ[p[n]]-1,{n,1,30}]
Comments