cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A234647 Primes of the form q(p) - 1, where p is a prime and q(.) is the strict partition function (A000009).

Original entry on oeis.org

2, 11, 17, 37, 53, 103, 1259, 1609, 5119, 9791, 70487, 570077, 20792119, 281138047, 23515017983, 35692320959, 48626519093, 3626048321047, 27077619952639, 1651411233432319, 10743948315198451, 13378670620050079, 39413984631175423, 58553713102334907283, 145464242180631569963, 25408177717067357968543, 1374387931601409538722802926765483199, 20557774525717988142856527912112710143, 326033386646595458662191828888146112979, 27403889354101748193301659902924397784656229
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 29 2013

Keywords

Comments

Though the primes in this sequence are very rare, by the conjecture in A234615 there should be infinitely many such primes.
See A234644 for a list of known primes p with q(p) - 1 prime.

Crossrefs

Programs

  • Maple
    a(1) = 2 since 2 = q(5) - 1 with 2 and 5 both prime.
  • Mathematica
    p[n_]:=A234615(n)
    Table[PartitionsQ[p[n]]-1,{n,1,30}]

Formula

a(n) = A000009(A234615(n)) - 1.

A234808 a(n) = |{0 < k < n: p = k + phi(n-k) and 2*n - p are both prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 0, 3, 1, 2, 5, 2, 1, 5, 1, 2, 7, 2, 1, 4, 1, 2, 1, 4, 1, 4, 2, 4, 11, 4, 2, 3, 1, 5, 2, 3, 2, 6, 1, 5, 15, 4, 2, 9, 1, 6, 2, 5, 4, 6, 4, 4, 3, 8, 3, 6, 4, 7, 21, 2, 4, 7, 1, 7, 4, 6, 4, 6, 4, 8, 22, 7, 3, 13, 1, 10, 5, 3, 5, 7, 4, 9, 5, 10, 5, 8, 7, 7, 6, 8, 5, 6, 3, 8, 6, 7, 4, 8, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 30 2013

Keywords

Comments

Conjecture: a(n) > 0 except for n = 1, 8.
Clearly, this implies Goldbach's conjecture.

Examples

			a(3) = 1 since 2 + phi(1) = 3 and 2*3 - 3 = 3 are both prime.
a(20) = 1 since 11 + phi(9) = 17 and 2*20 - 17 = 23 are both prime.
a(22) = 1 since 1 + phi(21) = 13 and 2*22 - 13 = 31 are both prime.
a(24) = 1 since 9 + phi(15) = 17 and 2*24 - 17 = 31 are both prime.
a(76) = 1 since 67 + phi(9) = 73 and 2*76 - 73 = 79 are both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=k+EulerPhi[n-k]
    p[n_,k_]:=PrimeQ[f[n,k]]&&PrimeQ[2n-f[n,k]]
    a[n_]:=a[n]=Sum[If[p[n,k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A234809 a(n) = |{0 < k < n: p = k + phi(n-k) and 2*(n-p) + 1 are both prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 1, 4, 1, 1, 1, 5, 3, 7, 3, 1, 1, 7, 5, 9, 4, 2, 1, 9, 5, 2, 4, 3, 1, 10, 5, 14, 2, 2, 2, 1, 6, 14, 5, 4, 1, 15, 5, 16, 5, 5, 3, 17, 8, 4, 5, 6, 3, 17, 7, 5, 2, 6, 6, 17, 11, 25, 3, 5, 3, 1, 11, 25, 4, 4, 4, 22, 10, 26, 6, 7, 8, 3, 9, 26, 7, 9, 6, 25, 8, 3, 7, 9, 10, 25, 15, 6, 2, 9, 9, 2, 13, 29, 3, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 30 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 2.
Clearly, this implies Lemoine's conjecture which states that any odd number 2*n + 1 > 5 can be written as 2*p + q with p and q both prime.
See also A234808 for a similar conjecture.

Examples

			a(5) = 1 since 1 + phi(4) = 3 and 2*(5-3) + 1 = 5 are both prime.
a(16) = 1 since 7 + phi(9) = 13 and 2*(16-13) + 1 = 7 are both prime.
a(41) = 1 since 7 +phi(34) = 23 and 2*(41-23) + 1 = 37 are both prime.
a(156) = 1 since 131 + phi(25) = 151 and 2*(156-151) + 1 = 11 are both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=k+EulerPhi[n-k]
    p[n_,k_]:=PrimeQ[f[n,k]]&&PrimeQ[2*(n-f[n,k])+1]
    a[n_]:=a[n]=Sum[If[p[n,k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]
Previous Showing 11-13 of 13 results.