cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A239538 Number of (4+1)X(n+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

13, 68, 1014, 11108, 131988, 1533792, 17931608, 209295248, 2443954640, 28534764096, 333172950560, 3890104752256, 45420709489664, 530330059963392, 6192109859155200, 72298791884174336, 844157402919585408
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Comments

Row 4 of A239537

Examples

			Some solutions for n=4
..0..1..0..2..1....0..1..0..2..1....0..1..0..0..1....0..1..0..1..0
..0..1..0..2..1....0..1..0..2..1....0..1..0..0..1....0..1..0..1..0
..1..0..0..1..2....0..1..2..2..1....0..1..0..0..1....0..2..0..1..2
..1..0..2..1..2....0..2..2..1..0....2..1..2..2..1....1..2..2..0..2
..1..0..2..1..2....0..2..2..1..0....2..1..2..2..1....1..2..2..0..2
		

Formula

Empirical: a(n) = 8*a(n-1) +46*a(n-2) -22*a(n-3) -166*a(n-4) +28*a(n-5) +68*a(n-6) +208*a(n-7) -160*a(n-8) -48*a(n-9) +32*a(n-10)

A239530 Number of (n+1) X (1+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

1, 1, 6, 13, 47, 128, 405, 1181, 3598, 10705, 32259, 96544, 290009, 869417, 2609238, 7826117, 23480935, 70438624, 211322637, 633956965, 1901888606, 5705637161, 17116957851, 51350798528, 154052516977, 462157354513, 1386472381350
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Examples

			Some solutions for n=5:
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..0..2....2..0....1..0....1..0....1..0....0..2....2..0....2..1....2..1....1..0
..0..2....2..0....1..0....1..0....1..0....0..2....2..0....2..1....2..0....1..0
..1..2....1..0....0..1....1..0....2..1....2..0....0..2....0..2....1..0....0..2
..1..2....1..0....0..1....1..0....2..1....2..0....0..2....0..2....1..0....0..2
		

Crossrefs

Column 1 of A239537.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 3*a(n-3).
Conjectures from Colin Barker, Oct 26 2018: (Start)
G.f.: x*(1 - x) / ((1 - 3*x)*(1 + x - x^2)).
a(n) = (10*3^n + 2^(-n)*((-1+sqrt(5))^n*(-5+4*sqrt(5)) - (-1-sqrt(5))^n*(5+4*sqrt(5)))) / 55.
(End)

A239531 Number of (n+1) X (2+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

2, 2, 24, 68, 406, 1584, 7790, 33630, 156032, 695344, 3168922, 14262616, 64640674, 291830210, 1320357280, 5966652996, 26981170086, 121963213688, 551425857374, 2492844327694, 11270188295640, 50950869428672, 230346017497690
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Examples

			Some solutions for n=5:
..0..1..2....0..1..0....0..1..0....0..1..2....0..1..0....0..1..2....0..1..2
..0..1..2....0..1..0....0..1..0....0..1..2....0..1..0....0..1..2....0..1..2
..0..1..0....0..1..2....2..0..2....0..2..0....1..2..1....0..1..2....2..1..2
..2..1..0....0..1..2....2..0..2....0..2..0....1..2..1....0..1..2....2..1..2
..2..1..0....1..2..0....1..0..1....1..0..1....0..1..0....1..0..1....1..2..0
..2..1..0....1..2..0....1..0..1....1..0..1....0..1..0....1..0..1....1..2..0
		

Crossrefs

Column 2 of A239537.

Formula

Empirical: a(n) = 2*a(n-1) + 13*a(n-2) - a(n-3) - 23*a(n-4) - 28*a(n-5) + 11*a(n-6) + 40*a(n-7) - 9*a(n-8) - 5*a(n-9) + 5*a(n-10).
Empirical g.f.: 2*x*(1 - x - 3*x^2 - 2*x^3 + 3*x^4 + 7*x^5 - x^6 - x^7 + x^8) / (1 - 2*x - 13*x^2 + x^3 + 23*x^4 + 28*x^5 - 11*x^6 - 40*x^7 + 9*x^8 + 5*x^9 - 5*x^10). - Colin Barker, Oct 26 2018

A239532 Number of (n+1) X (3+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

6, 6, 216, 1014, 13254, 98304, 984150, 8368566, 77673624, 687582150, 6243858486, 55924463616, 504631320486, 4535315519334, 40848737643864, 367488643786134, 3308125850845350, 29769598506080256, 267943541451802614
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Examples

			Some solutions for n=5:
..0..1..0..2....0..1..0..1....0..1..1..0....0..1..2..0....0..1..2..1
..0..1..0..2....0..1..0..1....0..1..1..0....0..1..2..0....0..1..2..1
..1..0..0..2....0..1..2..1....0..1..2..1....1..0..1..2....2..1..0..1
..1..0..0..2....0..2..2..1....1..2..2..1....1..0..1..2....2..0..0..1
..0..1..1..0....0..2..0..1....1..2..2..1....1..0..2..0....1..0..2..1
..0..1..1..0....0..2..0..1....1..2..2..1....1..0..2..0....1..0..2..1
		

Crossrefs

Column 3 of A239537.

Formula

Empirical: a(n) = 8*a(n-1) + 26*a(n-2) - 166*a(n-3) + 96*a(n-4) + 198*a(n-5) - 81*a(n-6).
Empirical g.f.: 6*(1 - 7*x + 2*x^2 + 21*x^3 - 9*x^4) / ((1 + x)*(1 - 9*x)*(1 - 3*x + x^2)*(1 + 3*x - 9*x^2)). - Colin Barker, Oct 26 2018

A239533 Number of (n+1)X(4+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

16, 16, 1536, 11108, 293741, 3785280, 71388971, 1093269814, 18727824939, 301846514891, 5028043624263, 82269916141918, 1359237851307197, 22338985313123955, 368190066381319758, 6059086220408776630
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Comments

Column 4 of A239537

Examples

			Some solutions for n=5
..0..1..0..2..0....0..1..0..1..2....0..1..0..0..2....0..1..0..1..2
..0..1..0..2..0....0..1..0..1..2....0..1..0..0..2....0..1..0..1..2
..0..1..0..1..0....1..2..0..1..2....0..2..1..1..2....1..2..0..1..2
..0..2..1..1..0....1..2..0..1..0....0..2..1..1..2....1..2..0..1..2
..1..2..1..1..0....1..0..1..2..0....2..0..2..2..1....0..1..0..1..0
..1..2..1..1..0....1..0..1..2..0....2..0..2..2..1....0..1..0..1..0
		

A239534 Number of (n+1)X(5+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

44, 44, 11616, 131988, 7199001, 165336096, 5988724293, 169350916116, 5466853947751, 164296850179323, 5131131032053999, 156962544055183204, 4855406401541918053, 149293998662009764711, 4605398637091088559654
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Comments

Column 5 of A239537

Examples

			Some solutions for n=3
..0..1..0..2..1..0....0..1..2..1..1..2....0..1..1..0..0..1....0..1..2..0..2..1
..0..1..0..2..1..0....0..1..2..1..1..2....0..1..1..0..0..1....0..1..2..0..2..1
..1..2..1..2..0..1....2..0..2..1..1..0....0..1..1..2..2..0....2..0..0..2..0..2
..1..2..1..2..0..1....2..0..2..1..1..0....0..1..1..2..2..0....2..0..0..2..0..2
		

A239535 Number of (n+1)X(6+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

120, 120, 86400, 1533792, 171712936, 6976042240, 482858009716, 25030781490504, 1514104924173186, 84271877225127052, 4904669609011048390, 278670145806811741992, 16039384095013229680088, 916772052100684847959202
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Comments

Column 6 of A239537

Examples

			Some solutions for n=3
..0..1..0..2..1..0..2....0..1..2..0..2..1..0....0..1..2..0..1..0..2
..0..1..0..2..1..0..2....0..1..2..0..2..1..0....0..1..2..0..1..0..2
..0..2..1..0..1..0..2....0..2..0..1..1..2..0....0..1..2..2..0..0..2
..0..2..1..0..1..0..2....0..2..0..1..1..2..0....0..1..2..2..0..0..2
		

A239539 Number of (5+1)X(n+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

47, 406, 13254, 293741, 7199001, 171712936, 4125560328, 98927618805, 2373444167504, 56935033821392, 1365829523251090, 32764912977503476, 786000316204257639, 18855415452720965204, 452323942169129930212
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Comments

Row 5 of A239537

Examples

			Some solutions for n=4
..0..1..0..2..1....0..1..0..2..0....0..1..0..2..0....0..1..0..1..0
..0..1..0..2..1....0..1..0..2..0....0..1..0..2..0....0..1..0..1..0
..0..1..0..2..1....1..0..1..0..1....2..1..0..1..2....0..1..0..1..0
..0..1..0..2..1....1..0..1..0..1....2..1..0..1..2....2..1..0..0..2
..1..2..0..2..0....1..0..1..1..0....1..2..1..1..0....2..0..2..0..2
..1..2..0..2..0....1..0..1..1..0....1..2..1..1..0....2..0..2..0..2
		

Formula

Empirical: a(n) = 18*a(n-1) +182*a(n-2) -633*a(n-3) -6803*a(n-4) -6775*a(n-5) +106867*a(n-6) +431889*a(n-7) -869473*a(n-8) -3949105*a(n-9) -6257065*a(n-10) +35912689*a(n-11) +43919180*a(n-12) -44033625*a(n-13) -350944821*a(n-14) +11227128*a(n-15) +903916254*a(n-16) +345518286*a(n-17) -1175749708*a(n-18) -1409760256*a(n-19) +1442409200*a(n-20) +1805462320*a(n-21) -1287432256*a(n-22) -1543057504*a(n-23) +885072544*a(n-24) +1671519616*a(n-25) -998510432*a(n-26) -1343922048*a(n-27) +1000997440*a(n-28) +417630080*a(n-29) -613962880*a(n-30) +44547840*a(n-31) +230817792*a(n-32) -30259200*a(n-33) -30826496*a(n-34) +6275072*a(n-35) -1966080*a(n-36) -1966080*a(n-37)

A239540 Number of (6+1)X(n+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

128, 1584, 98304, 3785280, 165336096, 6976042240, 297124637920, 12622717987696, 536625406147360, 22809020631128424, 969537615294392640, 41211319597204417184, 1751741668044306860648, 74460018786142833463792
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Comments

Row 6 of A239537

Examples

			Some solutions for n=3
..0..1..2..1....0..1..1..0....0..1..1..2....0..1..0..2....0..1..0..2
..0..1..2..1....0..1..1..0....0..1..1..2....0..1..0..2....0..1..0..2
..0..2..2..1....1..2..2..0....2..1..1..2....2..0..0..2....1..2..1..2
..1..2..2..0....1..2..2..1....2..1..0..1....2..0..0..2....1..2..1..2
..1..2..2..0....1..2..2..1....0..2..0..1....2..0..0..1....0..2..1..0
..0..1..2..0....1..0..0..2....0..2..2..1....1..0..0..1....0..2..2..0
..0..1..2..0....1..0..0..2....0..2..2..1....1..0..0..1....0..2..2..0
		

Formula

Empirical recurrence of order 85 (see link above)

A239541 Number of (7+1)X(n+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

405, 7790, 984150, 71388971, 5988724293, 482858009716, 39351464058085, 3197707959464813, 260051519640219195, 21143995321557570468, 1719253480434235036170, 139793164967480337703364
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Comments

Row 7 of A239537

Examples

			Some solutions for n=2
..0..1..0....0..1..2....0..1..0....0..1..2....0..1..0....0..1..2....0..1..2
..0..1..0....0..1..2....0..1..0....0..1..2....0..1..0....0..1..2....0..1..2
..1..0..2....1..2..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..2
..1..0..2....1..2..0....0..2..1....0..1..0....0..2..0....2..1..2....2..1..0
..1..2..0....1..2..1....1..2..1....2..1..0....1..2..0....2..0..2....2..1..0
..0..2..0....2..0..1....1..2..1....2..1..0....1..2..1....2..0..2....2..1..0
..0..2..0....2..0..2....0..2..0....1..2..1....1..2..1....0..1..2....1..0..1
..0..2..0....2..0..2....0..2..0....1..2..1....1..2..1....0..1..2....1..0..1
		
Showing 1-10 of 12 results. Next