cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A244818 The hexagonal spiral of Champernowne, read along the 120-degree ray.

Original entry on oeis.org

1, 1, 6, 7, 1, 8, 1, 4, 1, 3, 6, 6, 6, 4, 3, 9, 3, 7, 2, 1, 2, 3, 7, 1, 7, 9, 3, 2, 8, 5, 0, 3, 5, 0, 8, 4, 8, 4, 6, 4, 7, 9, 6, 5, 2, 3, 7, 6, 3, 6, 8, 8, 0, 9, 1, 9, 3, 9, 1, 0, 0, 1, 3, 1, 2, 2, 1, 8, 1, 3, 4, 1, 6, 1, 5, 5, 1, 5, 1, 7, 7, 1, 7, 1, 9, 9, 2, 0, 2, 1, 1, 2, 6, 2, 3, 4, 2, 3, 2, 5, 6, 2, 3, 2, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A244807 example section for its diagram.
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; f[n_] := 12n^2 - 17n + 6 (* see formula section of A244807 *); Array[ almostNatural[ f@#, 10] &, 105]

Formula

(12n^2-17n+6)th almost natural number (A033307), also see formula section of A056105.

A255812 Rectangular array: row n gives the denominators in the positive convolutory n-th root of (1,1,1,...).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 8, 3, 1, 1, 16, 9, 4, 1, 1, 128, 81, 32, 5, 1, 1, 256, 243, 128, 25, 6, 1, 1, 1024, 729, 2048, 125, 72, 7, 1, 1, 2048, 6561, 8192, 625, 1296, 49, 8, 1, 1, 32768, 19683, 65536, 15625, 31104, 343, 128, 9, 1, 1, 65536, 59049, 262144, 78125
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2015

Keywords

Comments

(See Comments at A255811.)

Examples

			First, regarding the numbers numerator/denominator, we have
row 1:  1,1,1,1,1,1,1,1,1,1,1,1,..., the 0th self-convolution of (1,1,1,...);
row 2:  1,1/2,3/8,5/16,35/128,63/256, ..., convolutory sqrt of (1,1,1,...);
row 3:  1,1/3,2/9,14/81,35/243,91/729,..., convolutory 3rd root
row 4:  1,1/4,5/32,15/128,195/2048,663/8192,..., convolutory 4th root.
Taking only denominators:
row 1:  1,1,1,1,1,1,1,...
row 2:  1,2,8,16,128,...
row 3:  1,3,9,81,243,729,...
row 4:  1,4,32,128,2048,8192,...
		

Crossrefs

Programs

  • Mathematica
    z = 15; t[n_] := CoefficientList[Normal[Series[(1 - t)^(-1/n), {t, 0, z}]], t];
    u = Table[Numerator[t[n]], {n, 1, z}]
    TableForm[Table[u[[n, k]], {n, 1, z}, {k, 1, z}]]     (*A255811 array*)
    Table[u[[n - k + 1, k]], {n, z}, {k, n, 1, -1}] // Flatten (*A255811 sequence*)
    v = Table[Denominator[t[n]], {n, 1, z}]
    TableForm[Table[v[[n, k]], {n, 1, z}, {k, 1, z}]]     (*A255812 array*)
    Table[v[[n - k + 1, k]], {n, z}, {k, n, 1, -1}] // Flatten  (*A255812 sequence*)

Formula

G.f. of s: (1 - t)^(-1/n).
Previous Showing 11-12 of 12 results.