cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A245875 Number of length 6+2 0..n arrays with some pair in every consecutive three terms totalling exactly n.

Original entry on oeis.org

68, 1281, 4624, 13961, 30900, 63241, 113024, 193137, 305860, 470321, 688848, 987961, 1369844, 1869561, 2488960, 3272801, 4222404, 5393377, 6786320, 8468841, 10440628, 12782441, 15492864, 18666961, 22302020, 26508561, 31282384, 36750617
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=8:
..2....4....4....0....0....4....3....3....1....0....1....2....0....3....0....3
..6....4....1....8....8....4....6....6....7....8....8....2....7....7....8....7
..2....4....7....0....7....7....2....5....1....1....0....6....1....1....8....1
..2....8....4....6....1....1....3....3....4....7....2....2....3....1....0....0
..6....0....4....2....6....7....5....8....4....6....6....3....5....7....6....8
..5....3....4....6....2....1....5....0....5....1....3....5....3....3....2....8
..2....5....7....3....1....3....3....8....4....7....5....5....5....5....5....0
..6....4....1....2....6....5....4....0....3....4....7....3....3....5....3....5
		

Crossrefs

Row 6 of A245869.

Formula

Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Conjectures from Colin Barker, Nov 04 2018: (Start)
G.f.: x*(68 + 1077*x + 781*x^2 + 633*x^3 - 1143*x^4 - 561*x^5 + 103*x^6 + 3*x^7 - x^8) / ((1 - x)^6*(1 + x)^3).
a(n) = 1 + 22*n + 31*n^2 + 77*n^3 + 29*n^4 + n^5 for n even.
a(n) = -5 - 44*n + 10*n^2 + 77*n^3 + 29*n^4 + n^5 for n odd.
(End)

A245876 Number of length 7+2 0..n arrays with some pair in every consecutive three terms totalling exactly n.

Original entry on oeis.org

110, 2967, 12100, 40901, 97602, 214315, 404264, 727017, 1200310, 1920671, 2909100, 4309357, 6143690, 8614131, 11741392, 15797585, 20798334, 27098407, 34704020, 44065941, 55175890, 68594747, 84293880, 102959161, 124534982, 149847855
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=5:
..2....4....0....4....0....0....2....3....4....2....3....3....4....1....1....5
..2....1....5....3....2....3....4....0....1....0....3....5....3....3....0....0
..3....2....1....2....3....2....1....5....5....5....2....0....2....2....4....5
..2....3....4....3....0....5....3....0....0....3....3....1....5....5....5....2
..3....3....1....2....5....3....4....0....4....2....0....4....3....3....0....3
..3....2....2....4....3....2....1....5....1....0....5....2....2....2....5....5
..2....2....3....1....2....2....4....3....4....3....2....1....2....3....4....2
..3....3....2....0....1....3....2....2....2....2....0....3....3....2....1....0
..1....2....4....4....3....2....1....0....3....4....3....2....5....4....5....5
		

Crossrefs

Row 7 of A245869.

Formula

Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 8*a(n-3) - 2*a(n-4) + 12*a(n-5) - 2*a(n-6) - 8*a(n-7) + 3*a(n-8) + 2*a(n-9) - a(n-10).
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: x*(110 + 2747*x + 5836*x^2 + 8680*x^3 + 3456*x^4 - 2178*x^5 - 1148*x^6 - 224*x^7 + 2*x^8 - x^9) / ((1 - x)^6*(1 + x)^4).
a(n) = 1 + 37*n + 43*n^2 + 126*n^3 + 89*n^4 + 9*n^5 for n even.
a(n) = 7 - 76*n - 41*n^2 + 122*n^3 + 89*n^4 + 9*n^5 for n odd.
(End)
Previous Showing 11-12 of 12 results.