cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A245956 Number of length 6+3 0..n arrays with some pair in every consecutive four terms totalling exactly n.

Original entry on oeis.org

298, 11441, 88804, 525041, 1744494, 5208673, 12257032, 27206945, 53051890, 99643601, 172531308, 290962321, 464076214, 725751041, 1089854224, 1611694913, 2311078842, 3273303025, 4525364980, 6193054001, 8311825918, 11060605601
Offset: 1

Views

Author

R. H. Hardin, Aug 08 2014

Keywords

Comments

Row 6 of A245950

Examples

			Some solutions for n=3
..2....0....1....2....2....0....1....2....1....0....3....3....2....1....3....2
..1....3....1....0....1....2....3....1....2....3....2....3....2....2....2....2
..3....1....2....2....2....1....2....0....0....3....1....2....1....1....3....1
..0....0....3....3....2....1....1....1....3....0....3....1....0....2....1....3
..0....2....1....1....0....2....3....3....3....3....3....2....3....0....3....3
..0....3....2....2....3....2....2....1....0....0....0....0....3....0....0....2
..3....3....0....2....2....1....1....0....3....2....3....0....2....3....0....1
..3....1....3....0....0....3....0....3....3....3....0....3....1....3....3....1
..3....0....1....1....0....1....0....3....2....3....1....0....0....3....3....0
		

Formula

Empirical: a(n) = 3*a(n-1) +2*a(n-2) -14*a(n-3) +5*a(n-4) +25*a(n-5) -20*a(n-6) -20*a(n-7) +25*a(n-8) +5*a(n-9) -14*a(n-10) +2*a(n-11) +3*a(n-12) -a(n-13)

A245957 Number of length 7+3 0..n arrays with some pair in every consecutive four terms totalling exactly n.

Original entry on oeis.org

548, 31577, 300304, 2141609, 7972932, 26526337, 67596992, 161991665, 335832580, 669329801, 1217929488, 2155659097, 3584230244, 5837790449, 9084731392, 13912683617, 20579766372, 30053056825, 42704873360, 60046213001, 82587911428
Offset: 1

Views

Author

R. H. Hardin, Aug 08 2014

Keywords

Comments

Row 7 of A245950

Examples

			Some solutions for n=2
..1....2....2....2....2....1....0....1....1....2....2....0....0....2....1....1
..0....0....1....1....2....1....2....1....2....0....1....2....2....0....2....0
..0....1....2....1....0....0....2....1....0....2....0....1....2....2....0....1
..1....2....0....0....1....2....0....1....1....0....1....1....2....0....2....0
..2....0....0....0....2....0....2....2....0....2....0....1....0....0....1....2
..1....2....2....1....2....0....1....1....2....1....2....0....1....2....2....2
..2....2....0....2....1....2....2....2....0....0....1....1....0....1....0....2
..0....0....2....1....1....0....1....1....2....1....0....0....1....1....2....0
..0....2....1....1....0....1....2....1....2....1....2....2....2....2....0....1
..0....2....2....0....1....2....1....0....1....2....2....2....0....0....2....1
		

Formula

Empirical: a(n) = 2*a(n-1) +5*a(n-2) -12*a(n-3) -9*a(n-4) +30*a(n-5) +5*a(n-6) -40*a(n-7) +5*a(n-8) +30*a(n-9) -9*a(n-10) -12*a(n-11) +5*a(n-12) +2*a(n-13) -a(n-14)
Previous Showing 11-12 of 12 results.