cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A246000 Number of length 5+2 0..n arrays with no pair in any consecutive three terms totalling exactly n.

Original entry on oeis.org

2, 38, 956, 7132, 40590, 153906, 496088, 1319480, 3178490, 6857470, 13855572, 26075028, 46848326, 80108042, 132346160, 210837616, 327085938, 493492950, 729039980, 1053585740, 1496758142, 2088821218, 2874009096, 3896630952
Offset: 1

Views

Author

R. H. Hardin, Aug 09 2014

Keywords

Comments

Row 5 of A245995

Examples

			Some solutions for n=6
..4....4....0....2....1....0....3....3....0....4....1....0....3....3....4....4
..5....6....2....2....1....0....1....5....5....5....3....2....4....6....4....5
..6....5....1....5....2....0....1....5....5....0....4....0....1....4....4....4
..4....3....1....0....1....5....6....5....0....2....6....0....3....4....4....3
..6....5....1....2....1....2....3....5....4....5....3....0....4....0....1....1
..4....0....4....0....4....3....1....3....0....6....5....5....0....1....3....4
..3....2....6....1....3....6....4....2....5....6....5....3....5....4....2....4
		

Formula

Empirical: a(n) = 3*a(n-1) +2*a(n-2) -14*a(n-3) +5*a(n-4) +25*a(n-5) -20*a(n-6) -20*a(n-7) +25*a(n-8) +5*a(n-9) -14*a(n-10) +2*a(n-11) +3*a(n-12) -a(n-13)

A246001 Number of length 6+2 0..n arrays with no pair in any consecutive three terms totalling exactly n.

Original entry on oeis.org

2, 56, 2308, 23168, 171942, 795144, 3057032, 9401216, 25819210, 62402840, 139927692, 288998016, 566057198, 1047126248, 1862251792, 3175741184, 5253738642, 8416795896, 13163097620, 20070807680, 30009814582, 43960191176
Offset: 1

Views

Author

R. H. Hardin, Aug 09 2014

Keywords

Comments

Row 6 of A245995.

Examples

			Some solutions for n=5
..0....4....3....3....0....1....0....0....4....1....4....3....0....0....4....1
..3....4....3....0....4....0....4....1....3....1....4....3....3....3....0....1
..3....5....0....0....3....0....4....3....5....0....2....1....1....4....0....1
..4....5....3....2....0....3....0....1....5....0....2....3....1....3....0....0
..4....1....1....0....4....4....3....3....4....3....0....3....2....3....1....0
..3....1....0....1....4....0....1....1....3....3....2....5....0....5....0....4
..5....1....0....1....0....2....3....1....3....3....2....5....1....1....0....3
..5....2....3....0....2....0....0....3....1....0....0....3....3....5....4....0
		

Crossrefs

Cf. A245995.

Formula

Empirical: a(n) = 3*a(n-1) +3*a(n-2) -17*a(n-3) +3*a(n-4) +39*a(n-5) -25*a(n-6) -45*a(n-7) +45*a(n-8) +25*a(n-9) -39*a(n-10) -3*a(n-11) +17*a(n-12) -3*a(n-13) -3*a(n-14) +a(n-15).

A246002 Number of length 7+2 0..n arrays with no pair in any consecutive three terms totalling exactly n.

Original entry on oeis.org

2, 82, 5572, 75260, 728358, 4108062, 18838280, 66983128, 209732170, 567864650, 1413132492, 3203059092, 6839534702, 13687432150, 26203871248, 47834595632, 84386904210, 143553121218, 237664797140, 382348873900, 601693049782
Offset: 1

Views

Author

R. H. Hardin, Aug 09 2014

Keywords

Comments

Row 7 of A245995

Examples

			Some solutions for n=4
..0....2....1....4....4....2....4....2....4....2....2....2....3....4....4....4
..1....4....0....1....2....4....2....4....3....3....4....3....2....1....1....1
..1....1....1....1....1....4....3....3....4....4....1....3....3....1....1....4
..0....2....1....2....1....1....4....2....2....4....2....4....3....4....4....4
..0....1....1....1....0....2....2....3....3....3....4....4....4....1....1....1
..3....1....1....1....2....0....3....0....3....3....4....1....4....4....2....2
..2....4....2....0....1....1....0....3....2....4....2....2....3....1....4....4
..4....1....1....2....1....1....2....3....4....2....1....0....3....1....3....1
..1....2....0....3....4....1....3....0....3....1....1....1....0....2....3....1
		

Formula

Empirical: a(n) = 3*a(n-1) +4*a(n-2) -20*a(n-3) +56*a(n-5) -28*a(n-6) -84*a(n-7) +70*a(n-8) +70*a(n-9) -84*a(n-10) -28*a(n-11) +56*a(n-12) -20*a(n-14) +4*a(n-15) +3*a(n-16) -a(n-17)
Previous Showing 11-13 of 13 results.