cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A272279 First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 454", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

4, -1, 16, -11, 28, -9, 29, -28, 43, 0, 73, -48, 68, -8, 76, -92, 108, -44, 84, -20, 164, -5, 76, -167, 151, -40, 261, -148, 144, 3, 272, -247, 163, -4, 32, -48, 265, -5, 236, -140, 141, -157, 412, -115, 344, -220, 355, -308, 452, -47, 171, -92, 260, 77, 195
Offset: 0

Views

Author

Robert Price, Apr 24 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A246326.

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=454; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Table[on[[i+1]]-on[[i]],{i,1,Length[on]-1}] (* Difference at each stage *)

A272277 Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 454", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 5, 20, 57, 233, 980, 3508, 14868, 58405, 229204, 920924, 3674453, 14688173, 58779657, 235052852, 939831460
Offset: 0

Views

Author

Robert Price, Apr 24 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A246326.

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=454; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)

Extensions

a(8)-a(15) from Lars Blomberg, Jul 04 2016
Previous Showing 11-12 of 12 results.