cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A252535 Number of (3+2) X (n+2) 0..3 arrays with every 3 X 3 subblock row and diagonal sum equal to 0 2 3 6 or 7 and every 3 X 3 column and antidiagonal sum not equal to 0 2 3 6 or 7.

Original entry on oeis.org

460, 334, 466, 626, 1120, 1760, 2404, 4304, 6832, 9416, 16864, 26912, 37264, 66752, 106816, 148256, 265600, 425600, 591424, 1059584, 1699072, 2362496, 4232704, 6789632, 9443584, 16919552, 27145216, 37761536, 67655680, 108554240, 151020544
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Examples

			Some solutions for n=4:
..3..3..1..3..3..1....1..0..1..1..0..1....1..1..0..1..1..0....0..0..2..0..0..2
..3..2..2..3..2..2....0..0..3..0..0..2....3..0..0..3..0..3....0..1..1..0..1..1
..2..3..2..2..3..2....0..1..1..0..1..1....1..0..1..1..0..1....1..0..1..1..0..1
..3..3..1..3..3..1....1..0..1..1..0..1....1..1..0..1..1..0....0..0..2..0..0..3
..3..2..2..3..2..1....0..3..3..0..0..2....2..0..0..2..0..0....0..1..1..0..1..1
		

Crossrefs

Row 3 of A252532.

Formula

Empirical: a(n) = 6*a(n-3) - 8*a(n-6) for n>8.
Empirical g.f.: 2*x*(230 + 167*x + 233*x^2 - 1067*x^3 - 442*x^4 - 518*x^5 + 1164*x^6 + 128*x^7) / ((1 - 2*x^3)*(1 - 4*x^3)). - Colin Barker, Dec 04 2018

A252536 Number of (4+2) X (n+2) 0..3 arrays with every 3 X 3 subblock row and diagonal sum equal to 0 2 3 6 or 7 and every 3 X 3 column and antidiagonal sum not equal to 0 2 3 6 or 7.

Original entry on oeis.org

535, 426, 610, 790, 1592, 2440, 3160, 6368, 9760, 12640, 25472, 39040, 50560, 101888, 156160, 202240, 407552, 624640, 808960, 1630208, 2498560, 3235840, 6520832, 9994240, 12943360, 26083328, 39976960, 51773440, 104333312, 159907840
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Examples

			Some solutions for n=4:
..3..2..2..3..2..2....0..3..0..0..3..3....1..2..0..1..1..0....0..0..2..0..0..2
..2..3..2..2..3..2....1..1..0..1..1..0....0..1..1..0..1..1....0..1..1..0..1..1
..3..3..1..3..3..0....0..1..1..0..1..1....0..2..0..0..2..0....1..0..1..1..0..1
..3..2..2..3..2..2....0..3..0..0..2..0....1..1..0..1..1..0....0..0..2..0..0..2
..2..3..2..2..3..2....1..1..0..1..1..0....0..1..1..0..1..1....0..1..1..0..1..1
..3..0..0..3..3..1....0..1..1..0..1..1....0..3..0..0..2..0....1..0..1..1..0..2
		

Crossrefs

Row 4 of A252532.

Formula

Empirical: a(n) = 4*a(n-3) for n>5.
Empirical g.f.: x*(535 + 426*x + 610*x^2 - 1350*x^3 - 112*x^4) / (1 - 4*x^3). - Colin Barker, Dec 04 2018

A252537 Number of (5+2) X (n+2) 0..3 arrays with every 3 X 3 subblock row and diagonal sum equal to 0 2 3 6 or 7 and every 3 X 3 column and antidiagonal sum not equal to 0 2 3 6 or 7.

Original entry on oeis.org

546, 676, 1114, 1676, 4420, 7184, 11456, 31136, 50560, 83840, 232192, 376832, 639488, 1789952, 2904064, 4990976, 14049280, 22790144, 39428096, 111312896, 180551680, 313425920, 886177792, 1437335552, 2499411968, 7072120832
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Examples

			Some solutions for n=4:
..1..2..0..1..1..0....0..2..0..0..2..0....2..3..2..2..3..2....1..3..3..0..0..3
..0..1..1..0..1..1....1..1..0..1..1..0....3..3..1..3..3..0....2..3..2..2..3..2
..0..2..0..0..2..0....0..1..1..0..1..1....3..2..2..3..2..2....2..2..3..2..2..3
..1..1..0..1..1..0....0..2..0..0..2..0....2..3..2..2..3..2....0..3..3..1..3..3
..0..1..1..0..1..1....1..1..0..1..1..0....3..3..1..3..3..1....2..3..2..2..3..2
..0..3..0..0..3..0....0..1..1..0..1..1....3..2..2..3..2..2....2..2..3..2..2..3
..1..1..0..1..1..0....0..2..0..0..2..0....2..3..2..2..3..2....1..3..3..1..3..3
		

Crossrefs

Row 5 of A252532.

Formula

Empirical: a(n) = 12*a(n-3) - 32*a(n-6) for n>8.
Empirical g.f.: 2*x*(273 + 338*x + 557*x^2 - 2438*x^3 - 1846*x^4 - 3092*x^5 + 4408*x^6 - 136*x^7) / ((1 - 2*x)*(1 + 2*x + 4*x^2)*(1 - 4*x^3)). - Colin Barker, Dec 04 2018

A252538 Number of (6+2) X (n+2) 0..3 arrays with every 3 X 3 subblock row and diagonal sum equal to 0 2 3 6 or 7 and every 3 X 3 column and antidiagonal sum not equal to 0 2 3 6 or 7.

Original entry on oeis.org

649, 964, 1748, 2504, 7136, 13184, 19232, 54656, 102272, 150656, 427520, 805376, 1192448, 3381248, 6391808, 9488384, 26894336, 50929664, 75702272, 214532096, 406618112, 604798976, 1713766400, 3249668096, 4835115008, 13700169728
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Examples

			Some solutions for n=4:
..3..1..3..3..1..3....0..0..2..0..0..2....1..3..3..0..3..3....1..0..1..1..0..1
..2..2..3..2..2..3....0..1..1..0..1..1....2..3..2..2..3..2....0..0..3..0..0..2
..3..2..2..3..2..2....1..0..1..1..0..1....2..2..3..2..2..3....0..1..1..0..1..1
..3..1..3..3..1..3....0..0..3..0..0..3....1..3..3..0..3..3....1..0..1..1..0..1
..2..2..3..2..2..3....0..1..1..0..1..1....2..3..2..2..3..2....0..0..2..0..0..3
..3..2..2..3..2..2....1..0..1..1..0..1....2..2..3..2..2..3....0..1..1..0..1..1
..0..0..3..3..1..3....3..0..3..0..0..2....0..3..3..1..3..3....1..0..1..1..0..1
..2..2..3..2..2..3....0..1..1..0..1..2....2..3..2..2..3..2....3..0..3..0..0..3
		

Crossrefs

Row 6 of A252532.

Formula

Empirical: a(n) = 12*a(n-3) - 32*a(n-6) for n>8.
Empirical g.f.: x*(649 + 964*x + 1748*x^2 - 5284*x^3 - 4432*x^4 - 7792*x^5 + 9952*x^6 - 128*x^7) / ((1 - 2*x)*(1 + 2*x + 4*x^2)*(1 - 4*x^3)). - Colin Barker, Dec 04 2018

A252539 Number of (7+2) X (n+2) 0..3 arrays with every 3 X 3 subblock row and diagonal sum equal to 0 2 3 6 or 7 and every 3 X 3 column and antidiagonal sum not equal to 0 2 3 6 or 7.

Original entry on oeis.org

823, 1344, 2332, 3160, 10720, 18656, 25280, 85760, 149248, 202240, 686080, 1193984, 1617920, 5488640, 9551872, 12943360, 43909120, 76414976, 103546880, 351272960, 611319808, 828375040, 2810183680, 4890558464, 6627000320, 22481469440
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Examples

			Some solutions for n=4:
..0..1..1..0..1..1....1..3..3..0..0..3....1..0..1..1..0..1....2..0..1..1..0..1
..0..2..0..0..2..0....2..3..2..2..3..2....0..0..3..0..0..2....1..1..0..1..1..0
..1..1..0..1..1..0....2..2..3..2..2..3....0..1..1..0..1..1....2..0..0..3..0..0
..0..1..1..0..1..1....0..3..3..0..3..3....1..0..1..1..0..1....1..0..1..1..0..1
..0..3..0..0..3..0....2..3..2..2..3..2....0..0..2..0..0..2....1..1..0..1..1..0
..1..1..0..1..1..0....2..2..3..2..2..3....0..1..1..0..1..1....3..0..0..3..0..0
..0..1..1..0..1..1....1..3..3..0..3..3....1..0..1..1..0..1....1..0..1..1..0..1
..3..3..0..0..2..0....2..3..2..2..3..2....0..0..3..0..0..2....1..1..0..1..1..0
..1..1..0..1..1..0....2..2..3..2..2..3....0..1..1..0..1..2....3..3..0..3..0..0
		

Crossrefs

Row 7 of A252532.

Formula

Empirical: a(n) = 8*a(n-3) for n>5.
Empirical g.f.: x*(823 + 1344*x + 2332*x^2 - 3424*x^3 - 32*x^4) / ((1 - 2*x)*(1 + 2*x + 4*x^2)). - Colin Barker, Dec 05 2018

A252524 Number of (n+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 2 3 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 2 3 6 or 7.

Original entry on oeis.org

750, 337, 466, 790, 4420, 13184, 25280, 433664, 1580032, 3235840, 191758336, 781844480, 1656750080, 363528716288, 1573635751936, 3393024163840, 2862166206054400
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Diagonal of A252532

Examples

			Some solutions for n=4
..0..1..1..0..1..1....0..3..0..0..3..0....2..0..0..2..0..0....3..1..2..3..2..2
..0..2..0..0..3..3....1..1..0..1..1..0....1..0..1..1..0..1....3..1..3..3..0..0
..1..1..0..1..1..0....0..1..1..0..1..1....1..1..0..1..1..0....2..2..3..2..2..3
..0..1..1..0..1..1....0..3..0..0..2..0....2..0..0..2..0..0....3..2..2..3..2..2
..0..2..0..0..2..0....1..1..0..1..1..0....1..0..1..1..0..1....0..0..3..3..1..3
..1..1..0..1..1..0....0..1..1..0..2..1....1..1..0..1..1..0....2..2..3..2..1..3
		
Previous Showing 11-16 of 16 results.