cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A252577 Number of (3+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

890, 1558, 4168, 9051, 30532, 92725, 208375, 715437, 2196824, 4932817, 17087917, 52719076, 118137939, 412475333, 1277261765, 2857270465, 10039630707, 31180060771, 69654819267, 245981412469, 765710684488, 1708718651733
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Row 3 of A252574

Examples

			Some solutions for n=4
..0..0..2..0..0..2....1..3..2..2..3..1....1..0..0..2..0..0....0..2..0..0..2..0
..3..1..2..3..2..2....0..0..1..0..0..2....2..3..1..2..3..2....0..0..2..0..0..2
..0..2..0..0..1..0....2..0..0..2..0..0....0..0..2..0..0..1....3..2..2..3..2..1
..0..0..2..0..0..2....2..3..2..2..3..2....2..0..0..1..0..0....0..1..0..0..2..0
..3..2..2..3..2..1....0..0..1..0..0..1....2..3..2..2..3..2....1..0..1..0..0..2
		

Formula

Empirical: a(n) = 46*a(n-3) -572*a(n-6) +1298*a(n-9) -3089*a(n-12) +4222*a(n-15) -3472*a(n-18) +3104*a(n-21) -1536*a(n-24) for n>32

A252578 Number of (4+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

1469, 3286, 10885, 25882, 107651, 395500, 959944, 4006901, 14816006, 35925302, 149837853, 555593556, 1346798430, 5611997409, 20856438080, 50548611374, 210462210945, 783856206336, 1899488450222, 7902528627913, 29493363498624
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Row 4 of A252574

Examples

			Some solutions for n=4
..2..3..2..1..3..2....0..2..0..0..1..0....0..0..2..0..0..1....0..0..2..0..0..2
..0..0..2..0..0..2....0..0..1..0..0..1....3..1..2..3..2..2....3..1..2..3..2..1
..2..0..0..2..0..0....3..2..2..3..2..2....0..2..0..0..1..0....0..2..0..0..2..0
..2..3..2..2..3..2....0..1..0..0..2..0....0..0..1..0..0..2....0..0..2..0..0..2
..0..0..1..0..0..2....0..0..2..0..0..2....3..2..2..3..2..1....0..1..1..3..2..1
..1..0..0..1..0..0....3..2..1..3..1..2....0..1..0..0..2..0....0..2..0..0..2..0
		

Formula

Empirical: a(n) = 78*a(n-3) -1701*a(n-6) +7656*a(n-9) -30460*a(n-12) +70284*a(n-15) -70416*a(n-18) +25968*a(n-21) -1408*a(n-24) for n>31

A252579 Number of (5+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

2637, 7610, 34532, 88844, 498696, 2538669, 6590930, 37656158, 199331443, 514906002, 2994563004, 16370844276, 42106677118, 248304737187, 1390789570131, 3565907298743, 21240150477364, 121018033333627, 309607017470686
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Row 5 of A252574

Examples

			Some solutions for n=4
..2..3..2..2..3..1....2..3..2..1..3..2....2..1..3..2..1..3....2..3..1..2..3..2
..0..0..2..0..0..2....0..0..2..0..0..2....2..0..0..2..0..0....0..0..2..0..0..2
..2..0..0..2..0..0....2..0..0..2..0..0....0..2..0..0..2..0....2..0..0..2..0..0
..1..3..2..2..3..2....1..3..2..1..3..2....1..1..3..2..2..3....2..3..1..2..3..1
..0..0..1..0..0..2....0..0..2..0..0..2....2..0..0..2..0..0....0..0..2..0..0..2
..2..0..0..1..0..0....2..0..0..2..0..0....0..2..0..0..2..0....2..0..0..2..0..0
..2..3..2..2..3..2....1..3..1..1..3..1....1..1..3..1..2..3....1..3..2..1..3..1
		

Formula

Empirical: a(n) = 156*a(n-3) -6470*a(n-6) +53472*a(n-9) -284258*a(n-12) +1115672*a(n-15) -1799999*a(n-18) +969878*a(n-21) -48450*a(n-24) for n>32

A252580 Number of (6+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

4583, 17261, 96099, 263046, 1887578, 11285381, 31059674, 225598956, 1361132361, 3729210396, 27362165487, 166198069299, 453536490301, 3356182671339, 20487487055456, 55725146612802, 415147146187485, 2543940816582309
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Row 6 of A252574

Examples

			Some solutions for n=3
..0..2..0..0..1....0..2..0..0..2....1..0..0..2..0....0..2..0..0..2
..2..2..3..2..2....1..2..3..2..2....0..2..0..0..2....1..2..3..2..2
..1..0..0..2..0....2..0..0..2..0....2..2..3..1..2....2..0..0..2..0
..0..1..0..0..2....0..2..0..0..2....2..0..0..2..0....0..2..0..0..1
..2..2..3..1..1....2..2..3..2..1....0..2..0..0..2....2..2..3..2..2
..2..0..0..2..0....1..0..0..2..0....1..2..3..2..1....1..0..0..2..0
..0..2..0..0..2....1..1..0..0..2....2..0..0..2..0....0..2..0..0..1
..2..2..3..1..1....2..2..3..2..2....1..1..0..0..2....2..2..3..2..2
		

Formula

Empirical: a(n) = 235*a(n-3) -15377*a(n-6) +231134*a(n-9) -2810947*a(n-12) +23472227*a(n-15) -127442070*a(n-18) +618426102*a(n-21) -1174418266*a(n-24) +287094995*a(n-27) +1098948151*a(n-30) -697123678*a(n-33) -202978930*a(n-36) +197586425*a(n-39) -20970000*a(n-42) for n>50

A252581 Number of (7+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

8279, 39419, 275252, 802760, 7115253, 53055996, 155864925, 1380518004, 10339904588, 30371389585, 268585630512, 2020072809256, 5932838682650, 52395775636832, 395480404508430, 1161448118532776, 10243694081474738
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Row 7 of A252574

Examples

			Some solutions for n=2
..0..0..1..0....0..0..1..0....2..3..2..2....0..2..0..0....1..2..3..2
..2..0..0..1....3..2..2..3....0..0..1..0....2..1..3..1....2..0..0..2
..2..3..2..2....0..1..0..0....1..0..0..2....2..0..0..2....0..2..0..0
..0..0..1..0....0..0..2..0....2..3..2..2....0..2..0..0....2..2..3..2
..2..0..0..2....3..2..2..3....0..0..2..0....2..2..3..2....1..0..0..1
..2..3..2..2....0..2..0..0....2..0..0..1....2..0..0..2....0..2..0..0
..0..0..2..0....0..0..2..0....2..3..2..2....0..2..0..0....2..2..3..2
..1..0..0..1....3..2..2..3....0..0..1..0....2..2..3..1....1..0..0..1
..2..3..1..2....0..2..0..0....1..0..0..1....1..0..0..2....0..2..0..0
		

Formula

Empirical: a(n) = 414*a(n-3) -49716*a(n-6) +1528047*a(n-9) -30967009*a(n-12) +445144640*a(n-15) -3431389746*a(n-18) +11737912047*a(n-21) -18662541672*a(n-24) +16329417636*a(n-27) -9970599024*a(n-30) +4262742720*a(n-33) -681198336*a(n-36) for n>45
Previous Showing 11-15 of 15 results.