cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A254171 Number of (4+2)X(n+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally.

Original entry on oeis.org

76832, 1014816, 13514192, 191190272, 2589374656, 34167243308, 443654425392, 5720473079212, 73617021646416, 947269263443756, 12190444367623280, 156900818355391996, 2019616532033996096, 25997546502044733452
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 4 of A254168

Examples

			Some solutions for n=1
..0..1..1....0..0..0....0..0..1....0..1..0....1..1..1....0..0..1....0..0..1
..0..1..0....0..0..0....1..1..1....0..0..1....0..1..0....0..0..0....0..0..0
..1..1..0....0..1..0....0..0..0....0..0..0....0..1..0....0..1..0....0..0..0
..1..0..0....0..0..0....0..1..0....0..1..0....0..1..1....1..1..1....1..0..0
..1..0..1....0..0..1....0..1..1....0..1..0....0..0..1....1..0..0....1..1..0
..1..0..1....1..0..1....0..1..0....0..1..0....0..0..1....1..1..0....1..0..1
		

A254172 Number of (5+2)X(n+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally.

Original entry on oeis.org

348032, 6159516, 119471400, 2437141776, 47722312832, 910592737776, 17154177879840, 320795556150368, 5990669265231248, 111829906812254944, 2087633151218299392, 38972776946929655072, 727593935236788680400
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 5 of A254168

Examples

			Some solutions for n=1
..0..0..1....0..0..0....0..0..1....1..0..0....0..0..1....0..0..1....0..0..1
..1..0..1....0..0..1....0..0..1....0..0..0....0..0..1....1..0..1....1..0..1
..1..1..0....0..0..0....0..1..0....1..1..1....1..1..0....1..1..0....1..1..1
..1..1..1....1..0..1....0..1..1....0..0..0....1..1..0....1..1..0....0..1..0
..1..0..1....1..1..0....1..1..0....0..1..0....0..0..0....1..1..0....1..1..1
..1..1..0....1..1..1....1..0..0....0..1..0....0..0..1....1..0..1....1..1..0
..0..1..0....1..0..1....0..0..0....0..0..1....0..0..1....1..1..0....1..1..0
		

A254173 Number of (6+2)X(n+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally.

Original entry on oeis.org

1511152, 36538548, 1054310240, 31143715804, 886761490936, 24789263869340, 684072377169008, 18738106424812380, 512823923719769272, 14030281670008005564, 383831267774223029112, 10500422875690342522680
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 6 of A254168

Examples

			Some solutions for n=1
..0..0..0....0..0..0....0..0..0....0..0..0....1..0..0....0..0..0....0..0..0
..0..0..1....0..0..0....1..0..1....1..0..1....1..0..0....0..0..1....0..1..0
..1..1..0....0..1..0....0..1..0....1..1..0....0..0..0....1..1..0....1..0..0
..0..1..1....1..0..1....0..0..0....1..1..0....1..1..0....1..1..1....0..1..0
..1..1..1....1..1..0....0..0..0....1..0..0....0..0..0....1..1..0....1..1..0
..0..0..0....1..1..0....1..0..0....1..1..1....0..1..0....0..0..0....0..0..1
..0..0..0....1..0..0....0..0..0....0..0..1....0..0..0....0..1..1....1..0..0
..0..0..1....0..0..0....0..0..0....0..0..0....1..1..1....0..1..1....0..1..1
		

A254174 Number of (7+2)X(n+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally.

Original entry on oeis.org

6440848, 217539476, 9378850720, 399587109728, 16524431408400, 676750215074144, 27196332026497280, 1084445796373438616, 43207926374198188784, 1720925651447157696832, 68523513350608477133408
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 7 of A254168

Examples

			Some solutions for n=1
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..0..1....0..0..1....0..0..1....0..0..0....1..0..0....1..0..1
..1..1..0....0..0..0....0..1..0....0..1..0....0..1..0....0..1..0....0..0..0
..1..0..0....1..0..1....0..0..1....0..0..0....0..1..0....1..0..1....1..0..1
..1..0..0....1..1..0....1..1..0....1..0..0....0..1..0....1..0..0....1..0..0
..1..0..0....1..1..0....1..1..0....0..1..0....0..1..1....0..1..0....1..1..0
..1..0..0....1..1..0....1..0..1....0..0..0....0..0..0....0..1..0....1..1..0
..1..0..1....1..0..0....1..0..0....0..1..1....0..1..1....0..0..0....0..1..1
..0..0..1....0..0..0....0..0..0....0..0..1....0..0..1....1..1..1....0..0..0
		
Previous Showing 11-14 of 14 results.