cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-21 of 21 results.

A316264 FDH numbers of strict integer partitions with odd length and all odd parts.

Original entry on oeis.org

2, 4, 7, 11, 16, 19, 25, 31, 41, 47, 53, 56, 61, 71, 79, 83, 88, 97, 101, 103, 107, 109, 113, 121, 127, 128, 131, 137, 139, 149, 151, 152, 154, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 200, 211, 223, 224, 227, 229, 233, 239, 241, 248, 251, 257
Offset: 1

Views

Author

Gus Wiseman, Jun 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			Sequence of all strict odd integer partitions begins (1), (3), (5), (7), (9), (11), (13), (15), (17), (19), (21), (1,3,5), (23), (25), (27), (29), (1,3,7), (31).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],And[OddQ[Length[FDfactor[#]]],OddQ[Times@@(FDfactor[#]/.FDrules)]]&]
Previous Showing 21-21 of 21 results.