cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A319735 Primitive weird numbers (pwn; A002975) congruent to 2 mod 4.

Original entry on oeis.org

70, 4030, 5830, 4199030, 1550860550, 66072609790
Offset: 1

Views

Author

M. F. Hasler and Robert G. Wilson v, Sep 26 2018

Keywords

Comments

Primitive weird numbers divisible by 2 but not by 4.
10805836895078390 = 2 * 5 * 11 * 89 * 167 * 829 * 7972687 is a term.

Examples

			a(1) is 70 = 2 * 5 * 7 with abundance of 4;
a(2) is 4030 = 2 * 5 * 13 * 31 with abundance of 4;
a(3) is 5830 = 2 * 5 * 11 * 53 with abundance of 4;
a(4) is 4199030 = 2 * 5 * 11 * 59 * 647 with abundance of 20;
a(5) is 1550860550 = 2 * 5^2 * 29 * 37 * 137 * 211 with abundance of 20;
a(6) is 66072609790 = 2 * 5 * 11 * 127^2 * 167 * 223 with abundance of 4; etc.
From _M. F. Hasler_, Nov 28 2018: (Start)
The larger terms are in other sequences related to PWN with many prime factors. We have the following relations:
   a(3) = 70 = A258882(1) = A258374(3) = A258250(1) = A002975(1).
   a(3) = 4030 = A258883(1) = A258374(4) = A258401(1) = A258250(3) = A002975(3).
   a(3) = 5830 = A258883(2) = A258401(2) = A258250(4) = A002975(4).
   a(4) = 4199030 = A258884(1) = A258374(5) = A258401(11) = A265727(15).
   a(5) = 1550860550 = A258885(1) = A273815(1) = A258374(6).
   a(6) = 66072609790 = A258885(3) = A273815(3). (End)
		

References

  • Gianluca Amato, Maximilian F. Hasler, Giuseppe Melfi, Maurizio Parton. Primitive weird numbers having more than three distinct prime factors. Rivista di Matematica della Università degli studi di Parma, 2016, 7(1), pp. 153-163. (hal-01684543)

Crossrefs

Programs

  • Mathematica
    (* import the b-file in A002975 and assign it to lst *);
    Select[lst, IntegerExponent[#, 2] == 1 &]

A322524 Primitive weird numbers (pwn; A002975) divisible by 4 but not 8.

Original entry on oeis.org

836, 45356, 91388, 243892, 254012, 338572, 343876, 388076, 29465852, 120888092, 259858324, 260378492, 410832532, 775397948, 785187524, 903217276, 989226964, 1609445332, 2358115084, 3254323124, 3381352084, 3381872252, 3781448788, 3782267372, 5056717796, 5065605532
Offset: 1

Views

Author

Robert G. Wilson v, Dec 13 2018

Keywords

Examples

			a(1) = 836 = 2^2 * 11 * 19;
a(2) = 45356 = 2^2 * 17 * 23 * 29;
a(3) = 91388 = 2^2 * 11 * 31 * 67; etc.
		

Crossrefs

Programs

  • Mathematica
    (* import the b-file in A002975 and assign it to lst *); Select[lst, IntegerExponent[#, 2] == 2 &]
Previous Showing 11-12 of 12 results.