A260863 Base-13 representation of a(n) is the concatenation of the base-13 representations of 1, 2, ..., n, n-1, ..., 1.
0, 1, 196, 33489, 5664400, 957345481, 161792190756, 27342890695849, 4620948663553600, 780940325907974961, 131978915101424183716, 22304436652439380447009, 3769449794266138309731600, 8281481197999449959084458465, 236527384496061684935031509169004
Offset: 0
Examples
a(0) = 0 is the result of the empty sum corresponding to 0 digits. a(2) = (13+1)^2 = 13^2 + 2*13 + 1 = 121_13, concatenation of (1, 2, 1). a(14) = 123456789abc101110cba987654321_13 is the concatenation of (1, 2, 3, ..., 9, a, b, c, 10, 11, 10, c, ..., 1), where "c, 10, 11" are the base-13 representations of 12, 13, 14.
Links
- D. Broadhurst, Primes from concatenation: results and heuristics, NmbrThry List, August 1, 2015
Crossrefs
Programs
-
PARI
a(n,b=13)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
Formula
For n < b = 13, we have a(n) = A_b(n) = R(b,n)^2, where R(b,n) = (b^n-1)/(b-1) are the base-b repunits.
Comments