A370749
a(n) = 2^n * [x^n] Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^(1/4).
Original entry on oeis.org
1, 2, 6, 28, 70, 300, 892, 3544, 9990, 43340, 127988, 546120, 1651356, 7227896, 22414008, 99344944, 312879302, 1396285452, 4486205892, 20057934312, 65293087284, 292353604136, 963327294536, 4308913730256, 14340603113372, 64059675491512, 215075154021384, 958968160741328
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - 2*x^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 2^Range[0, nmax]
nmax = 30; CoefficientList[Series[Product[(1 + 2*(2*x)^k)/(1 - 2*(2*x)^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]
A370750
a(n) = 9^n * [x^n] Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^(1/3).
Original entry on oeis.org
1, 12, 180, 3852, 50436, 947052, 14087844, 245858652, 3531115620, 64019229660, 950199749748, 16959724619004, 256888616329044, 4642974930688812, 71716402072904724, 1308491345357401068, 20501966472318764388, 376230182366985289164, 5987314157007778195716, 110286515004790197907836
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - 2*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 9^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[(1 + 2*(9*x)^k)/(1 - 2*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
A370752
a(n) = 3^n * [x^n] Product_{k>=1} ((1 + 3*x^k)/(1 - 3*x^k))^(1/3).
Original entry on oeis.org
1, 6, 36, 360, 1998, 18792, 121176, 1123632, 7537860, 72078174, 510702408, 4896308088, 35923749480, 345406994280, 2600934294816, 24985346997888, 191735328374478, 1838307293836560, 14317601666954364, 136953233511162840, 1079293961918593800, 10299943344889922832
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k)/(1 - 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k)/(1 - 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
Comments