cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A262425 Number of (6+1)X(n+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

85, 468, 61965, 2353338, 220808869, 15231780324, 1326209720893, 106936631502210, 9144003145262805, 767032051328412588, 65294836634705229805, 5531730973453989808938, 470372064891909511000069
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Row 6 of A262420.

Examples

			Some solutions for n=3
..0..1..1..0....0..0..0..0....1..1..1..1....1..0..0..1....0..0..0..0
..1..1..1..1....1..1..1..1....0..1..1..0....0..0..0..0....0..1..1..0
..1..0..0..1....0..0..0..0....1..1..1..1....1..0..0..1....1..1..0..0
..0..0..1..1....0..0..0..0....1..1..0..0....1..1..0..0....1..0..0..1
..1..0..0..1....1..1..0..0....0..0..0..0....0..0..1..1....0..0..1..1
..0..0..1..1....0..0..1..1....1..0..0..1....1..1..0..0....0..0..1..1
..1..1..0..0....1..1..1..1....1..1..1..1....1..1..1..1....1..1..0..0
		

Crossrefs

Cf. A262420.

Formula

Empirical: a(n) = 85*a(n-1) +3026*a(n-2) -257210*a(n-3) -2725780*a(n-4) +231691300*a(n-5) +1042604066*a(n-6) -88621345610*a(n-7) -184834243867*a(n-8) +15710910728695*a(n-9) +16148556399500*a(n-10) -1372627293957500*a(n-11) -690707626945552*a(n-12) +58710148290371920*a(n-13) +13366198928883008*a(n-14) -1136126908955055680*a(n-15) -92117546962355200*a(n-16) +7829991491800192000*a(n-17)

A262426 Number of (7+1)X(n+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

170, 1404, 371790, 25901100, 4856629870, 655089996204, 114043973318270, 18287074397509740, 3127153221958277070, 523889166822421058604, 89191893222477653902750, 15107199317712023101414380
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Row 7 of A262420.

Examples

			Some solutions for n=2
..1..1..0....0..0..0....1..1..0....1..1..0....0..1..1....0..1..1....0..1..1
..1..1..0....0..0..0....0..1..1....0..1..1....0..1..1....0..0..0....0..1..1
..0..1..1....0..1..1....1..1..0....0..1..1....0..0..0....0..0..0....1..1..0
..0..0..0....1..1..0....0..1..1....1..1..0....1..1..0....1..1..0....0..0..0
..0..0..0....0..1..1....1..1..0....0..1..1....0..1..1....0..0..0....0..1..1
..0..0..0....0..1..1....0..0..0....1..1..0....0..1..1....0..1..1....0..1..1
..1..1..0....0..1..1....1..1..0....0..0..0....0..0..0....0..0..0....1..1..0
..0..0..0....0..0..0....0..0..0....1..1..0....0..1..1....0..1..1....0..1..1
		

Crossrefs

Cf. A262420.

Formula

Empirical: a(n) = 170*a(n-1) +12088*a(n-2) -2054960*a(n-3) -43463646*a(n-4) +7388819820*a(n-5) +66398454660*a(n-6) -11287737292200*a(n-7) -47263888640505*a(n-8) +8034861068885850*a(n-9) +16948827007298316*a(n-10) -2881300591240713720*a(n-11) -3142452853334937648*a(n-12) +534216985066939400160*a(n-13) +298488023933669046336*a(n-14) -50742964068723737877120*a(n-15) -13934074238604397209600*a(n-16) +2368792620562747525632000*a(n-17) +287178122770920663040000*a(n-18) -48820280871056512716800000*a(n-19) -2061386929701535744000000*a(n-20) +350435778049261076480000000*a(n-21)

A262413 Number of (n+1)X(n+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

2, 4, 270, 18228, 9401742, 15231780324, 114043973318270, 3210825131209677780, 376663000295700912108942, 173793136176160952800090974444, 324528460592527213101965898811701630
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2015

Keywords

Comments

Diagonal of A262420.

Examples

			Some solutions for n=4
..1..0..1..0..1....1..1..1..1..0....1..1..0..0..0....1..0..1..0..1
..0..1..1..0..0....0..0..0..0..0....1..1..0..1..1....0..1..1..0..0
..0..0..1..1..0....1..0..1..0..1....1..1..1..1..0....0..0..0..1..1
..0..0..0..0..0....1..1..0..0..0....1..0..0..1..0....1..1..0..1..1
..0..0..0..0..0....1..1..0..0..0....1..1..0..0..0....1..1..1..1..0
		

Crossrefs

Cf. A262420.
Previous Showing 11-13 of 13 results.