A262643
Minimal nested palindromic base-5 primes with seed 3; see Comments.
Original entry on oeis.org
3, 131, 31313, 1313131, 413131314, 2341313131432, 40234131313143204, 144023413131314320441, 2314402341313131432044132, 2202314402341313131432044132022, 14220231440234131313143204413202241, 20114220231440234131313143204413202241102
Offset: 1
a(3) = 31313 is the least base-5 prime having a(2) = 131 in its middle.
Triangular format:
3
131
31313
1313131
413131314
2341313131432
-
s = {3}; base = 5; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262643 *)
Map[FromDigits[ToString[#], base] &, s] (* A262644 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262647
Minimal nested palindromic base-6 primes with seed 1; see Comments.
Original entry on oeis.org
1, 111, 1111111, 14111111141, 111411111114111, 103111411111114111301, 5510311141111111411130155, 10551031114111111141113015501, 501055103111411111114111301550105, 102501055103111411111114111301550105201, 5110250105510311141111111411130155010520115
Offset: 1
a(3) = 1111111 is the least base-6 prime having a(2) = 111 in its middle. Triangular format:
1
111
1111111
14111111141
111411111114111
103111411111114111301
-
s = {1}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262647 *)
Map[FromDigits[ToString[#], base] &, s] (* A262648 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262649
Minimal nested palindromic base-6 primes with seed 2; see Comments.
Original entry on oeis.org
2, 525, 1252521, 512525215, 102512525215201, 5110251252521520115, 151102512525215201151, 5515110251252521520115155, 50551511025125252152011515505, 525055151102512525215201151550525, 1152505515110251252521520115155052511
Offset: 1
a(3) = 1252521 is the least base-6 prime having a(2) = 525 in its middle. Triangular format:
2
525
1252521
512525215
102512525215201
5110251252521520115
-
s = {2}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262649 *)
Map[FromDigits[ToString[#], base] &, s] (* A262650 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262653
Minimal nested palindromic base-6 primes with seed 4; see Comments.
Original entry on oeis.org
4, 141, 11411, 5114115, 551141155, 1455114115541, 1111455114115541111, 55111145511411554111155, 1021551111455114115541111551201, 12102155111145511411554111155120121, 531210215511114551141155411115512012135, 101531210215511114551141155411115512012135101
Offset: 1
a(3) = 11411 is the least base-6 prime having a(2) = 141 in its middle. Triangular format:
4
141
11411
5114115
551141155
1455114115541
-
s = {4}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262653 *)
Map[FromDigits[ToString[#], base] &, s] (* A262654 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262655
Minimal nested palindromic base-6 primes with seed 5; see Comments.
Original entry on oeis.org
5, 151, 11511, 5115115, 13511511531, 5135115115315, 15513511511531551, 1155135115115315511, 14115513511511531551141, 131411551351151153155114131, 51314115513511511531551141315, 11551314115513511511531551141315511, 11511551314115513511511531551141315511511
Offset: 1
a(3) = 11511 is the least base-6 prime having a(2) = 151 in its middle.
Triangular format:
5
151
11511
5115115
13511511531
5135115115315
-
s = {5}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262655 *)
Map[FromDigits[ToString[#], base] &, s] (* A262656 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262657
Minimal nested palindromic base-7 primes with seed 1; see Comments.
Original entry on oeis.org
1, 212, 42124, 204212402, 2220421240222, 222204212402222, 2222220421240222222, 12222222042124022222221, 3122222220421240222222213, 331222222204212402222222133, 53312222222042124022222221335, 165331222222204212402222222133561
Offset: 1
a(3) = 42124 is the least base-7 prime having a(2) = 212 in its middle. Triangular format:
1
212
42124
204212402
2220421240222
222204212402222
2222220421240222222
-
s = {1}; base = 7; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262657 *)
Map[FromDigits[ToString[#], base] &, s] (* A262658 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262659
Minimal nested palindromic base-8 primes with seed 0; see Comments.
Original entry on oeis.org
0, 13031, 511303115, 3351130311533, 333511303115333, 1033351130311533301, 1051033351130311533301501, 35105103335113031153330150153, 12135105103335113031153330150153121, 12012135105103335113031153330150153121021, 331201213510510333511303115333015015312102133
Offset: 1
a(3) = 511303115 is the least base-8 prime having a(2) = 13031 in its middle. Triangular format:
0
13031
511303115
3351130311533
333511303115333
1033351130311533301
-
s = {0}; base = 8; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262659 *)
Map[FromDigits[ToString[#], base] &, s] (* A262660 *)
(* Peter J. C. Moses, Sep 01 2015 *)
A262661
Minimal nested palindromic base-8 primes with seed 1; see Comments.
Original entry on oeis.org
1, 111, 1411141, 12141114121, 10412141114121401, 11610412141114121401611, 171161041214111412140161171, 303171161041214111412140161171303, 3230317116104121411141214016117130323, 71323031711610412141114121401611713032317
Offset: 1
a(3) = 1411141 is the least base-8 prime having a(2) = 111 in its middle. Triangular format:
1
111
1411141
12141114121
10412141114121401
11610412141114121401611
-
s = {1}; base = 8; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262661 *)
Map[FromDigits[ToString[#], base] &, s] (* A262662 *)
(* Peter J. C. Moses, Sep 01 2015 *)
Comments