cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A265929 Number of 1 X n 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

5, 25, 92, 340, 1252, 4616, 17012, 62696, 231044, 851496, 3138100, 11564952, 42620580, 157071768, 578865076, 2133318088, 7862009732, 28974227016, 106780086132, 393521606584, 1450263256356, 5344722135352, 19697152196980
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Comments

Row 1 of A265928.

Examples

			Some solutions for n=4:
..1..3..0..1....0..3..3..1....2..1..3..0....0..1..4..0....1..2..2..0
		

Crossrefs

Cf. A265928.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) + 10*a(n-3) + 27*a(n-4) - 13*a(n-5) + 28*a(n-6) - 20*a(n-7) - 96*a(n-8) for n>9.
Empirical g.f.: x*(1 + x)*(5 + 5*x + 22*x^2 + 42*x^3 - 11*x^4 + 21*x^5 - 52*x^6 - 160*x^7) / (1 - 3*x + 2*x^2 - 10*x^3 - 27*x^4 + 13*x^5 - 28*x^6 + 20*x^7 + 96*x^8). - Colin Barker, Mar 21 2018

A265922 Number of nX2 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

25, 340, 4616, 62696, 851496, 11564952, 157071768, 2133318088, 28974227016, 393521606584, 5344722135352, 72590826767208, 985912408928360, 13390442524046040, 181866003973693912, 2470063509346243592
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Comments

Column 2 of A265928.

Examples

			Some solutions for n=4
..3..4....2..4....1..3....2..0....2..1....0..2....0..3....4..4....1..1....2..2
..1..0....3..3....2..4....1..1....3..0....1..4....4..0....2..2....2..0....3..1
..3..2....1..1....3..1....3..2....1..3....3..1....2..2....4..4....0..2....2..0
..4..1....2..4....0..0....4..0....4..0....0..4....4..3....3..1....1..1....0..1
		

Crossrefs

Cf. A265928.

Formula

Empirical: a(n) = 5*a(n-1) +110*a(n-2) +186*a(n-3) -1189*a(n-4) -2127*a(n-5) +4920*a(n-6) +5776*a(n-7) -9216*a(n-8)

A265923 Number of n X 3 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

92, 1740, 17936, 174000, 1671744, 15962560, 152267520, 1451371264, 13834836992, 131883277312, 1257236156416, 11986527891456, 114277874876416, 1089597587963904, 10388632576131072, 99054000222699520, 944443268554031104, 9005175397018238976, 85862124616319762432
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Examples

			Some solutions for n=4:
..1..4..0....2..3..1....2..1..3....1..4..4....0..0..3....0..4..1....2..4..0
..2..3..1....0..0..4....1..0..4....0..1..3....1..1..2....2..1..4....4..0..3
..3..1..4....3..4..0....2..1..3....1..0..0....4..0..0....3..4..0....2..1..1
..2..0..1....1..0..4....1..4..0....2..3..1....3..2..2....2..2..1....4..3..3
		

Crossrefs

Column 3 of A265928.

Formula

Empirical: a(n) = 8*a(n-1) +96*a(n-2) -736*a(n-3) -2464*a(n-4) +20480*a(n-5) +13312*a(n-6) -196096*a(n-7) +78592*a(n-8) +600064*a(n-9) -589824*a(n-10) for n>13.

A265924 Number of nX4 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

340, 9016, 72772, 542940, 4044156, 30029860, 225444912, 1691502456, 12779302796, 96726712256, 733594037948, 5585468980116, 42451575314372, 324411240385960, 2468510420444928, 18903703259295268, 143946266428000640
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Comments

Column 4 of A265928.

Examples

			Some solutions for n=3
..0..0..4..4....4..0..1..3....4..2..1..3....1..3..3..2....0..0..1..3
..1..1..0..3....3..4..4..2....2..1..3..4....2..0..0..1....3..1..4..0
..3..0..1..4....2..1..3..3....4..0..0..1....4..4..3..0....2..4..3..1
		

Crossrefs

Cf. A265928.

Formula

Empirical: a(n) = 16*a(n-1) +74*a(n-2) -2388*a(n-3) +3439*a(n-4) +135306*a(n-5) -522734*a(n-6) -3439014*a(n-7) +19923934*a(n-8) +36082640*a(n-9) -333465409*a(n-10) -59196434*a(n-11) +2436517719*a(n-12) +88992424*a(n-13) -9296733480*a(n-14) -4787400052*a(n-15) +15068783472*a(n-16) +20054756552*a(n-17) +3031868640*a(n-18) -14763124864*a(n-19) -19831398480*a(n-20) -12928318048*a(n-21) -3167850512*a(n-22) +1557170880*a(n-23) +1561396480*a(n-24) +555187200*a(n-25) +96018432*a(n-26) +6553600*a(n-27) -65536*a(n-28) for n>32

A265925 Number of nX5 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

1252, 44916, 273616, 1546496, 8821464, 51986544, 309447168, 1904101280, 11662822720, 73936333840, 461379072240, 2989492800168, 18885457119368, 124303652993736, 791413858826744, 5265714915850752, 33682209801072272
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Comments

Column 5 of A265928.

Examples

			Some solutions for n=2
..3..3..2..4..0....3..1..1..3..4....1..1..4..4..1....3..0..4..4..0
..0..2..1..3..4....4..0..0..1..1....3..3..0..1..3....1..1..3..3..1
		

Crossrefs

Cf. A265928.

Formula

Empirical: a(n) = 14*a(n-1) +114*a(n-2) -2416*a(n-3) -1855*a(n-4) +173910*a(n-5) -325748*a(n-6) -6792128*a(n-7) +23703581*a(n-8) +156116706*a(n-9) -782263598*a(n-10) -2103771328*a(n-11) +15368975735*a(n-12) +14058283410*a(n-13) -195305474720*a(n-14) +17084928400*a(n-15) +1657274833004*a(n-16) -1220297285976*a(n-17) -9420990684080*a(n-18) +11379059105120*a(n-19) +35043535878848*a(n-20) -55963552156032*a(n-21) -80348150064128*a(n-22) +159059277862912*a(n-23) +100278463577088*a(n-24) -247797165996032*a(n-25) -52668192727040*a(n-26) +177859657482240*a(n-27) +10696615526400*a(n-28) -42129240883200*a(n-29) -726663168000*a(n-30) +3114270720000*a(n-31) for n>39

A265926 Number of nX6 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

4616, 223788, 1042020, 4697060, 22093736, 112139348, 579039920, 3147755448, 16695518060, 93517706688, 501203927348, 2859121829240, 15405235373552, 89142152698780, 481953256911808, 2824461163398576, 15308600049212112
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Comments

Column 6 of A265928.

Examples

			Some solutions for n=1
..4..4..3..3..0..0....4..4..0..1..3..4....2..1..3..0..2..2....3..1..1..4..3..1
		

Crossrefs

Cf. A265928.

Formula

Empirical: a(n) = 12*a(n-1) +103*a(n-2) -1722*a(n-3) -2939*a(n-4) +106767*a(n-5) -63388*a(n-6) -3818080*a(n-7) +6821368*a(n-8) +88753235*a(n-9) -228687359*a(n-10) -1429736764*a(n-11) +4584661386*a(n-12) +16576168634*a(n-13) -62836934620*a(n-14) -141587501176*a(n-15) +622701665207*a(n-16) +905061966122*a(n-17) -4591839808287*a(n-18) -4391201427194*a(n-19) +25582794671753*a(n-20) +16522425949387*a(n-21) -108415973939476*a(n-22) -50233703208584*a(n-23) +349511463268834*a(n-24) +131466723678583*a(n-25) -851431283928441*a(n-26) -310212728772512*a(n-27) +1542982242611112*a(n-28) +640450098092716*a(n-29) -2018069409667076*a(n-30) -1053850634770704*a(n-31) +1795151718879024*a(n-32) +1248961532534208*a(n-33) -946555845247296*a(n-34) -962641790731008*a(n-35) +163939035103488*a(n-36) +412969818064896*a(n-37) +90641044776960*a(n-38) -61602295136256*a(n-39) -38676101087232*a(n-40) -8216950210560*a(n-41) -632073093120*a(n-42) for n>50

A265927 Number of nX7 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

17012, 1119424, 3883480, 13716476, 53801792, 238485164, 1135042936, 5759992224, 29783744648, 159386938728, 851999276304, 4668283409720, 25354240124600, 140755677796776, 771872865387920, 4322800211903112, 23867120132045176
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Comments

Column 7 of A265928.

Examples

			Some solutions for n=1
..1..1..4..4..0..0..4....1..1..3..3..0..1..1....0..2..3..3..2..0..4
		

Crossrefs

Cf. A265928.

Formula

Empirical recurrence of order 48 (see link above)

A265930 Number of 2Xn 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

25, 340, 1740, 9016, 44916, 223788, 1119424, 5621396, 28130560, 140718764, 704493864, 3528165236, 17658676752, 88394841700, 442557740144, 2215472575772, 11090095537400, 55519269652292, 277940545496176, 1391364670745476
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Comments

Row 2 of A265928.

Examples

			Some solutions for n=4
..0..4..4..3....3..2..4..3....3..1..0..4....4..4..0..1....1..1..3..3
..2..1..3..0....2..0..3..2....1..3..4..0....3..0..1..4....2..0..0..4
		

Crossrefs

Cf. A265928.

Formula

Empirical recurrence of order 55 (see link above)

A265931 Number of 3Xn 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

125, 4616, 17936, 72772, 273616, 1042020, 3883480, 14617920, 55503312, 210277584, 791400360, 2978940280, 11257286824, 42533780480, 160460490488, 604824610736, 2282902792488, 8619222724444, 32528290390168, 122688090414988
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Comments

Row 3 of A265928.

Examples

			Some solutions for n=4
..0..0..4..3....4..1..0..4....1..3..3..4....1..3..0..1....1..4..0..0
..3..4..1..1....3..0..4..1....4..0..0..1....3..0..4..3....4..3..3..4
..2..2..4..0....1..3..0..0....2..3..3..0....2..2..1..4....1..1..4..3
		

Crossrefs

Cf. A265928.

A265932 Number of 4Xn 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

Original entry on oeis.org

625, 62696, 174000, 542940, 1546496, 4697060, 13716476, 42266448, 137268524, 432014132, 1349545464, 4231840236, 13782839880, 43359019136, 137060135072, 432317230340, 1404453869116, 4429418463040, 14067958304776, 44544242171944
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2015

Keywords

Comments

Row 4 of A265928.

Examples

			Some solutions for n=3
..1..3..4....1..3..3....2..1..1....0..4..1....1..4..4....1..1..3....1..0..4
..0..0..1....4..0..2....3..3..0....2..1..4....3..1..1....4..3..1....3..1..1
..3..4..4....1..1..3....4..1..3....3..0..1....0..3..3....0..0..4....2..0..3
..2..2..3....4..4..1....1..4..2....2..1..4....2..0..4....2..2..3....4..3..1
		

Crossrefs

Cf. A265928.
Showing 1-10 of 14 results. Next