cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A267475 Number of length-7 0..n arrays with no following elements larger than the first repeated value.

Original entry on oeis.org

71, 1112, 8770, 44901, 171601, 532840, 1418740, 3357537, 7240267, 14483216, 27233174, 48620533, 83065269, 136640848, 217501096, 336375073, 507134991, 747442216, 1079476394, 1530752741, 2135032537, 2933331864, 3975033628
Offset: 1

Views

Author

R. H. Hardin, Jan 15 2016

Keywords

Comments

Row 7 of A267471.

Examples

			Some solutions for n=5:
..3....4....0....4....5....2....5....3....2....0....5....5....1....5....0....2
..0....0....4....4....3....0....3....4....0....1....0....0....4....3....2....3
..1....1....1....0....4....4....0....1....5....5....4....2....3....5....0....2
..3....4....2....0....4....2....4....0....5....0....4....4....0....4....3....1
..4....5....3....4....1....0....1....1....4....2....2....0....5....1....5....2
..3....0....3....1....0....4....4....5....2....3....3....1....4....4....2....4
..4....3....3....1....0....2....2....1....2....3....4....4....3....2....1....0
		

Crossrefs

Cf. A267471.

Formula

Empirical: a(n) = n^7 + (69/20)*n^6 + (17/2)*n^5 + (97/6)*n^4 + 20*n^3 + (893/60)*n^2 + 6*n + 1.
Conjectures from Colin Barker, Feb 05 2018: (Start)
G.f.: x*(71 + 544*x + 1862*x^2 + 1901*x^3 + 651*x^4 + 4*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
Previous Showing 11-11 of 11 results.