cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A268254 Number of length-(n+1) 0..n arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

3, 17, 143, 1610, 22710, 384605, 7594224, 171161319, 4333369912, 121706300672, 3754131927947, 126136021943207, 4584723067123764, 179223541390399501, 7497293121634632330, 334153612151475666156, 15807274255300507355559
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Comments

Diagonal of A268261.

Examples

			Some solutions for n=5
..0....4....2....3....1....1....4....4....2....2....1....4....5....4....1....4
..3....2....1....0....3....0....3....0....0....5....0....5....0....2....3....0
..0....4....2....1....2....2....1....3....0....0....1....1....2....5....0....2
..3....0....1....0....3....5....5....5....4....0....3....5....0....3....3....0
..5....2....4....0....2....2....2....3....1....0....5....4....1....2....0....3
..1....4....2....4....4....3....4....2....3....2....4....5....3....3....5....2
		

Crossrefs

Cf. A268261.

A268255 Number of length-(n+1) 0..2 arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

7, 17, 42, 106, 273, 717, 1918, 5218, 14413, 40349, 114282, 326938, 943257, 2740797, 8010982, 23529346, 69385813, 205282157, 608959218, 1810358938, 5391414273, 16078923309, 48007516942, 143470822498, 429083952157, 1284051486077
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Examples

			Some solutions for n=8:
..0....1....1....0....0....1....0....0....2....1....0....1....2....0....0....1
..0....0....0....0....0....0....0....2....0....2....1....2....1....1....0....0
..2....0....0....2....0....1....1....0....0....0....2....1....2....0....1....2
..0....1....0....0....2....0....0....0....0....0....1....2....1....0....0....0
..1....1....1....1....0....2....0....0....1....2....2....0....0....2....0....2
..0....1....2....1....2....0....1....1....1....1....1....0....1....1....1....1
..1....1....1....0....0....0....0....0....1....0....2....1....0....0....1....0
..0....1....2....1....2....2....2....0....2....1....0....0....0....1....1....0
..2....1....0....0....1....1....1....1....2....0....0....2....1....1....1....1
		

Crossrefs

Column 2 of A268261.

Formula

Empirical: a(n) = 7*a(n-1) - 15*a(n-2) + 7*a(n-3) + 6*a(n-4).
Conjectures from Colin Barker, Jan 11 2019: (Start)
G.f.: x*(7 - 32*x + 28*x^2 + 18*x^3) / ((1 - 2*x)*(1 - 3*x)*(1 - 2*x - x^2)).
a(n) = 2^n + 3^n/2 + (3/4-1/sqrt(2))*(1-sqrt(2))^n + (3/4+1/sqrt(2))*(1+sqrt(2))^n.
(End)

A268256 Number of length-(n+1) 0..3 arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

13, 43, 143, 479, 1616, 5492, 18804, 64869, 225483, 789747, 2787100, 9910252, 35501416, 128109313, 465606659, 1704022367, 6278399432, 23282368196, 86873186508, 326055377709, 1230562324251, 4668500002491, 17797745988388
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Examples

			Some solutions for n=8:
..0....0....1....1....0....2....0....1....2....2....0....0....2....2....3....0
..1....2....2....3....1....3....0....0....0....3....1....3....1....1....0....0
..3....0....3....0....2....0....0....3....0....1....3....1....0....3....1....0
..2....2....1....1....3....0....3....0....0....0....2....0....0....2....0....1
..3....1....0....0....2....1....2....0....1....3....3....3....0....0....3....0
..2....2....1....0....1....2....1....3....3....1....0....2....1....0....2....0
..1....3....2....1....3....1....3....1....0....0....0....0....3....2....1....0
..2....0....1....1....1....0....2....0....3....0....3....0....1....3....0....1
..0....3....2....3....3....1....0....3....2....3....2....1....2....1....1....2
		

Crossrefs

Column 3 of A268261.

Formula

Empirical: a(n) = 13*a(n-1) - 60*a(n-2) + 105*a(n-3) - 11*a(n-4) - 94*a(n-5) - 24*a(n-6).
Empirical g.f.: x*(13 - 126*x + 364*x^2 - 165*x^3 - 403*x^4 - 96*x^5) / ((1 - 3*x)*(1 - 4*x)*(1 - 3*x - x^2)*(1 - 3*x - 2*x^2)). - Colin Barker, Jan 11 2019

A268257 Number of length-(n+1) 0..4 arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

21, 89, 378, 1610, 6877, 29461, 126591, 545627, 2359152, 10233188, 44533546, 194450722, 851923695, 3745257911, 16522347429, 73145533817, 324971178262, 1448957138290, 6483809640888, 29119030669064, 131250471466965
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Examples

			Some solutions for n=7:
..1....0....2....2....3....0....0....1....1....1....0....2....3....2....1....1
..0....0....0....3....0....1....4....0....0....2....1....3....0....0....3....3
..0....3....0....2....2....0....2....3....1....0....0....1....2....3....0....0
..3....4....3....1....0....0....3....2....0....1....0....3....1....4....2....4
..4....3....0....3....0....0....2....3....4....3....1....4....0....3....3....0
..1....2....4....0....0....1....4....0....0....1....4....2....4....0....4....1
..2....3....1....0....0....0....2....1....4....2....1....0....0....0....1....0
..4....1....1....0....2....4....3....2....1....4....4....0....2....4....2....1
		

Crossrefs

Column 4 of A268261.

Formula

Empirical: a(n) = 21*a(n-1) - 170*a(n-2) + 634*a(n-3) - 899*a(n-4) - 401*a(n-5) + 1310*a(n-6) + 826*a(n-7) + 120*a(n-8).
Empirical g.f.: x*(21 - 352*x + 2079*x^2 - 4512*x^3 - 220*x^4 + 7524*x^5 + 4261*x^6 + 600*x^7) / ((1 - 4*x)*(1 - 5*x)*(1 - 4*x - x^2)*(1 - 4*x - 2*x^2)*(1 - 4*x - 3*x^2)). - Colin Barker, Jan 13 2019

A268258 Number of length-(n+1) 0..5 arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

31, 161, 837, 4357, 22710, 118530, 619490, 3242265, 16993552, 89197862, 468891563, 2468601733, 13016765331, 68745010766, 363645146551, 1926748983131, 10225750976768, 54362543336048, 289501143028324, 1544393456553619
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Comments

Column 5 of A268261.

Examples

			Some solutions for n=6
..1....3....0....1....1....4....1....3....5....0....4....5....4....3....1....1
..2....1....3....4....2....2....0....4....4....1....0....1....2....2....4....0
..5....2....0....0....0....4....3....1....1....4....0....5....4....4....1....0
..4....3....2....0....2....1....2....4....2....0....1....0....5....3....5....3
..3....0....1....4....3....4....0....5....1....4....2....0....1....0....4....0
..1....3....4....2....0....5....0....1....4....2....4....3....0....3....1....5
..4....2....1....0....5....1....0....2....2....0....1....2....1....1....2....2
		

Crossrefs

Cf. A268261.

Formula

Empirical: a(n) = 31*a(n-1) -390*a(n-2) +2490*a(n-3) -7960*a(n-4) +8610*a(n-5) +11775*a(n-6) -18175*a(n-7) -22024*a(n-8) -7236*a(n-9) -720*a(n-10)

A268259 Number of length-(n+1) 0..6 arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

43, 265, 1634, 10082, 62249, 384605, 2377935, 14712729, 91096234, 564452368, 3500093507, 21720172553, 134891317195, 838393028557, 5215069599851, 32465881779821, 202280863699652, 1261388175969986, 7872540872887539
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Comments

Column 6 of A268261.

Examples

			Some solutions for n=5
..2....5....1....0....1....0....3....0....5....6....6....5....4....5....3....6
..6....3....5....5....2....0....4....4....1....4....5....0....3....4....0....4
..2....0....3....1....6....1....6....3....0....3....4....3....6....2....5....6
..0....6....6....0....2....0....4....0....4....0....0....5....5....5....1....5
..1....2....4....6....6....1....1....2....0....3....2....0....4....0....3....4
..2....5....6....1....2....3....3....6....1....4....6....5....6....5....2....2
		

Crossrefs

Cf. A268261.

Formula

Empirical: a(n) = 43*a(n-1) -777*a(n-2) +7545*a(n-3) -41215*a(n-4) +115171*a(n-5) -81663*a(n-6) -274113*a(n-7) +244616*a(n-8) +557626*a(n-9) +307440*a(n-10) +67488*a(n-11) +5040*a(n-12)

A268260 Number of length-(n+1) 0..7 arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

57, 407, 2907, 20771, 148468, 1061632, 7594224, 54345509, 389060724, 2786424182, 19964380499, 143102062257, 1026171833136, 7361751375225, 52836226761762, 379380311345241, 2725291071400498, 19586141747713834, 140826889434423348
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Comments

Column 7 of A268261.

Examples

			Some solutions for n=5
..6....7....3....1....6....4....1....5....1....2....7....0....5....5....1....4
..0....3....1....2....1....0....4....0....4....1....0....0....2....0....4....2
..2....4....3....6....2....4....1....4....0....3....3....0....3....3....6....0
..3....0....5....4....7....7....5....1....2....4....4....7....7....1....0....5
..7....0....7....0....6....2....4....7....5....0....7....2....5....4....7....1
..6....6....6....5....5....6....5....5....0....5....2....4....7....6....2....6
		

Crossrefs

Cf. A268261.

Formula

Empirical: a(n) = 57*a(n-1) -1400*a(n-2) +19187*a(n-3) -157759*a(n-4) +765212*a(n-5) -1872339*a(n-6) +503475*a(n-7) +6299972*a(n-8) -2706851*a(n-9) -14207501*a(n-10) -11689832*a(n-11) -4172972*a(n-12) -680688*a(n-13) -40320*a(n-14)

A268262 Number of length-(3+1) 0..n arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

9, 42, 143, 378, 837, 1634, 2907, 4818, 7553, 11322, 16359, 22922, 31293, 41778, 54707, 70434, 89337, 111818, 138303, 169242, 205109, 246402, 293643, 347378, 408177, 476634, 553367, 639018, 734253, 839762, 956259, 1084482, 1225193
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Examples

			Some solutions for n=8:
..0....2....4....3....2....2....5....1....7....2....4....8....4....2....4....7
..2....4....0....6....4....1....0....6....0....8....1....3....2....4....1....6
..8....6....0....8....0....5....0....4....3....0....6....7....7....0....3....2
..5....7....2....4....3....1....4....5....1....1....8....0....4....4....8....7
		

Crossrefs

Row 3 of A268261.

Formula

Empirical: a(n) = n^4 + n^3 + 3*n^2 + 2*n + 2.
Conjectures from Colin Barker, Jan 13 2019: (Start)
G.f.: x*(9 - 3*x + 23*x^2 - 7*x^3 + 2*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A268263 Number of length-(4+1) 0..n arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

17, 106, 479, 1610, 4357, 10082, 20771, 39154, 68825, 114362, 181447, 276986, 409229, 587890, 824267, 1131362, 1524001, 2018954, 2635055, 3393322, 4317077, 5432066, 6766579, 8351570, 10220777, 12410842, 14961431, 17915354, 21318685
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Examples

			Some solutions for n=8:
..0....5....4....4....0....4....4....8....5....3....6....6....4....1....0....7
..4....2....3....5....7....1....8....5....1....6....5....7....1....7....4....4
..6....1....0....1....8....7....1....8....4....0....7....8....4....8....3....2
..5....7....5....8....0....0....0....4....0....6....1....5....5....5....8....6
..4....6....0....2....3....0....0....5....0....1....6....6....4....1....0....0
		

Crossrefs

Row 4 of A268261.

Formula

Empirical: a(n) = n^5 + n^4 + 4*n^3 + 3*n^2 + 6*n + 2.
Conjectures from Colin Barker, Jan 13 2019: (Start)
G.f.: x*(17 + 4*x + 98*x^2 - 14*x^3 + 17*x^4 - 2*x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A268264 Number of length-(5+1) 0..n arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

33, 273, 1616, 6877, 22710, 62249, 148468, 318261, 627242, 1155265, 2012664, 3347213, 5351806, 8272857, 12419420, 18173029, 25998258, 36454001, 50205472, 68036925, 90865094, 119753353, 155926596, 200786837, 255929530, 323160609
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Examples

			Some solutions for n=7:
..6....0....4....7....2....6....4....6....5....0....7....0....5....7....1....3
..3....6....1....2....4....0....6....1....0....2....0....0....2....3....2....2
..2....7....7....3....6....3....7....0....0....7....7....2....4....6....3....5
..6....0....0....6....3....0....2....4....6....5....6....1....3....3....5....7
..0....0....5....2....2....4....5....5....1....4....4....0....4....7....3....6
..3....4....6....0....0....1....7....1....3....5....0....4....2....2....2....3
		

Crossrefs

Row 5 of A268261.

Formula

Empirical: a(n) = n^6 + n^5 + 5*n^4 + 4*n^3 + 12*n^2 + 6*n + 5 for n>1.
Conjectures from Colin Barker, Jan 13 2019: (Start)
G.f.: x*(33 + 42*x + 398*x^2 + 143*x^3 + 107*x^4 - 2*x^5 - 2*x^6 + x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)
Showing 1-10 of 12 results. Next