cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A268999 Number of 5Xn binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

32, 379, 4083, 43512, 421450, 4097199, 38241770, 354861630, 3233293149, 29238488883, 261801167468, 2329097648405, 20588801089961, 181083224080162, 1585346158237184, 13824737077018333, 120130562347636272
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2016

Keywords

Comments

Row 5 of A268995.

Examples

			Some solutions for n=4
..0..0..0..0. .1..1..0..1. .1..0..0..1. .0..0..1..0. .0..1..0..0
..1..1..0..1. .0..1..0..0. .0..1..0..0. .1..0..1..1. .0..0..0..0
..0..1..0..0. .0..0..0..1. .1..0..0..1. .1..0..0..1. .0..0..0..1
..0..0..1..0. .1..0..0..0. .1..0..0..1. .1..0..0..1. .1..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..0..1. .1..0..0..0. .0..0..0..1
		

Crossrefs

Cf. A268995.

Formula

Empirical: a(n) = 2*a(n-1) +97*a(n-2) +116*a(n-3) -2923*a(n-4) -10986*a(n-5) +4951*a(n-6) +72992*a(n-7) +36740*a(n-8) -223968*a(n-9) -159382*a(n-10) +423052*a(n-11) +256370*a(n-12) -539504*a(n-13) -176570*a(n-14) +450908*a(n-15) +6166*a(n-16) -217920*a(n-17) +57416*a(n-18) +45120*a(n-19) -25021*a(n-20) +562*a(n-21) +2089*a(n-22) -388*a(n-23) -31*a(n-24) +14*a(n-25) -a(n-26)

A269000 Number of 6Xn binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

64, 1121, 19416, 308112, 4583103, 66954420, 946498448, 13228660133, 181784804730, 2475749104139, 33385659799195, 447113747804052, 5948793054106681, 78732585838628885, 1037092115497761586
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2016

Keywords

Comments

Row 6 of A268995.

Examples

			Some solutions for n=3
..0..1..0. .0..0..0. .0..1..1. .0..1..0. .0..1..0. .0..0..0. .0..0..1
..0..0..1. .0..1..0. .0..0..1. .0..0..1. .0..0..0. .0..0..0. .0..0..1
..1..0..0. .0..0..1. .1..0..1. .0..0..1. .0..1..0. .1..0..0. .1..0..1
..1..0..1. .1..0..0. .1..0..1. .0..0..0. .1..0..0. .0..1..0. .1..0..1
..0..1..0. .0..1..0. .0..0..0. .1..0..0. .1..0..0. .0..1..1. .0..0..0
..0..0..0. .0..1..1. .0..0..1. .1..1..0. .1..0..0. .0..0..0. .0..1..0
		

Crossrefs

Cf. A268995.

Formula

Empirical: a(n) = 2*a(n-1) +237*a(n-2) +556*a(n-3) -17745*a(n-4) -102122*a(n-5) +202421*a(n-6) +2379616*a(n-7) -22987*a(n-8) -27364786*a(n-9) -13031593*a(n-10) +199889692*a(n-11) +91121845*a(n-12) -1012462462*a(n-13) -190133151*a(n-14) +3595273076*a(n-15) -642988498*a(n-16) -8640634728*a(n-17) +4929067410*a(n-18) +12985931924*a(n-19) -13174973746*a(n-20) -9991379232*a(n-21) +18252268246*a(n-22) +272964868*a(n-23) -13058804606*a(n-24) +5323457016*a(n-25) +4041105222*a(n-26) -3401387484*a(n-27) -210272991*a(n-28) +912442186*a(n-29) -169777035*a(n-30) -118543140*a(n-31) +43493135*a(n-32) +6734614*a(n-33) -4652195*a(n-34) -21632*a(n-35) +259061*a(n-36) -13682*a(n-37) -7961*a(n-38) +524*a(n-39) +133*a(n-40) -6*a(n-41) -a(n-42)

A269001 Number of 7Xn binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

128, 3272, 91491, 2144780, 49084071, 1073436321, 22995344760, 483176766982, 10012943674291, 205190835537996, 4165999185526245, 83946395869892249, 1680542804576091072, 33458893826064355756, 662949906600663076935
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2016

Keywords

Comments

Row 7 of A268995.

Examples

			Some solutions for n=3
..0..1..1. .1..0..0. .0..0..1. .1..1..0. .0..0..1. .1..1..0. .0..1..0
..0..0..1. .0..1..0. .1..0..1. .0..0..1. .1..0..1. .0..0..0. .0..0..1
..1..0..0. .0..1..1. .0..0..0. .0..0..0. .0..0..0. .1..0..0. .1..0..1
..0..0..1. .0..0..0. .1..0..1. .1..0..1. .0..0..1. .0..1..0. .1..0..0
..1..0..1. .0..0..1. .0..0..1. .1..0..0. .0..1..0. .0..0..0. .0..0..0
..0..0..0. .0..0..1. .0..0..0. .1..0..1. .0..1..0. .0..1..0. .1..0..0
..0..0..1. .1..0..0. .0..1..0. .1..0..0. .0..0..0. .0..0..1. .1..0..0
		

Crossrefs

Cf. A268995.

Formula

Empirical recurrence of order 68 (see link above)
Previous Showing 11-13 of 13 results.