cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A269280 Number of 5Xn 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 236196, 36673560, 4684312584, 542973139128, 59587625651904, 6310088238337128, 651615466055490216, 66042694681962193944, 6597498728751383594736, 651529527626284234223688
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2016

Keywords

Comments

Row 5 of A269276.

Examples

			Some solutions for n=2
..1..0. .1..1. .0..0. .0..1. .1..1. .0..2. .0..1. .1..1. .0..2. .0..1
..0..3. .0..1. .1..0. .2..0. .1..1. .1..1. .0..0. .0..1. .3..2. .3..2
..1..3. .1..1. .1..3. .2..2. .1..0. .3..2. .0..0. .2..2. .2..3. .1..0
..3..3. .2..0. .2..1. .3..1. .2..0. .3..3. .2..2. .0..2. .1..0. .1..1
..1..0. .0..2. .0..0. .0..2. .2..1. .1..3. .1..0. .3..1. .3..2. .1..3
		

Crossrefs

Cf. A269276.

Formula

Empirical: a(n) = 262*a(n-1) -25913*a(n-2) +1271424*a(n-3) -36373480*a(n-4) +662028380*a(n-5) -8018113210*a(n-6) +65608158980*a(n-7) -356568260410*a(n-8) +1185405035940*a(n-9) -1609856308508*a(n-10) -4162483461884*a(n-11) +23709461283851*a(n-12) -40474763971218*a(n-13) +272846513475*a(n-14) +106799477038956*a(n-15) -171480164894532*a(n-16) +115612142099328*a(n-17) -29562621871104*a(n-18) for n>23

A269281 Number of 6Xn 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 2598156, 938176344, 279339197256, 75556007986536, 19356924219624936, 4786284820998999528, 1154228064358389881112, 273210106596010141952520, 63745055133289730721040968, 14703244384392257014503473256
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2016

Keywords

Comments

Row 6 of A269276.

Examples

			Some solutions for n=2
..0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0
..2..0. .2..1. .0..2. .0..2. .0..1. .2..0. .0..0. .2..2. .2..1. .0..1
..1..3. .0..2. .3..0. .1..1. .0..0. .1..1. .3..2. .0..0. .1..1. .0..2
..2..3. .0..0. .0..1. .0..0. .3..3. .3..1. .3..2. .3..1. .0..1. .2..1
..1..0. .2..0. .0..2. .1..0. .3..1. .1..2. .3..3. .3..1. .1..0. .0..2
..1..2. .0..0. .0..2. .1..0. .0..1. .3..1. .3..2. .3..2. .2..3. .0..1
		

Crossrefs

Cf. A269276.

Formula

Empirical recurrence of order 40 (see link above)

A269282 Number of 7Xn 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 27634932, 23230366488, 16128206816904, 10181956012212600, 6090616046325570480, 3516906597130333936872, 1980763969657041721006344, 1095070756128723603201412440, 596778595867621855341816843744
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2016

Keywords

Comments

Row 7 of A269276.

Examples

			Some solutions for n=2
..0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0
..0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0
..0..1. .0..3. .0..1. .2..0. .0..2. .0..2. .2..1. .0..1. .2..2. .2..0
..3..3. .1..0. .1..0. .3..2. .3..1. .3..0. .1..1. .3..1. .2..3. .1..0
..0..1. .1..1. .1..0. .0..0. .0..1. .1..1. .1..0. .3..0. .2..3. .3..2
..1..0. .3..1. .2..1. .0..1. .2..0. .1..0. .1..3. .2..2. .3..0. .2..0
..1..3. .1..0. .3..1. .0..0. .0..1. .2..3. .1..3. .3..2. .2..2. .1..3
		

Crossrefs

Cf. A269276.
Previous Showing 11-13 of 13 results.