A269280 Number of 5Xn 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once.
0, 236196, 36673560, 4684312584, 542973139128, 59587625651904, 6310088238337128, 651615466055490216, 66042694681962193944, 6597498728751383594736, 651529527626284234223688
Offset: 1
Keywords
Examples
Some solutions for n=2 ..1..0. .1..1. .0..0. .0..1. .1..1. .0..2. .0..1. .1..1. .0..2. .0..1 ..0..3. .0..1. .1..0. .2..0. .1..1. .1..1. .0..0. .0..1. .3..2. .3..2 ..1..3. .1..1. .1..3. .2..2. .1..0. .3..2. .0..0. .2..2. .2..3. .1..0 ..3..3. .2..0. .2..1. .3..1. .2..0. .3..3. .2..2. .0..2. .1..0. .1..1 ..1..0. .0..2. .0..0. .0..2. .2..1. .1..3. .1..0. .3..1. .3..2. .1..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269276.
Formula
Empirical: a(n) = 262*a(n-1) -25913*a(n-2) +1271424*a(n-3) -36373480*a(n-4) +662028380*a(n-5) -8018113210*a(n-6) +65608158980*a(n-7) -356568260410*a(n-8) +1185405035940*a(n-9) -1609856308508*a(n-10) -4162483461884*a(n-11) +23709461283851*a(n-12) -40474763971218*a(n-13) +272846513475*a(n-14) +106799477038956*a(n-15) -171480164894532*a(n-16) +115612142099328*a(n-17) -29562621871104*a(n-18) for n>23
Comments