cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A277727 Union of A158919, A277722, A277723.

Original entry on oeis.org

0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 62, 64, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2016

Keywords

Comments

See A277728 for discussion.

Crossrefs

A277735 Unique fixed point of the morphism 0 -> 01, 1 -> 20, 2 -> 0.

Original entry on oeis.org

0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2016

Keywords

Comments

From Clark Kimberling, May 21 2017: (Start)
Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2. Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where
U = 1.8392867552141611325518525646532866...,
V = U^2 = 3.3829757679062374941227085364...,
W = U^3 = 6.2222625231203986266745611011....
If n >=2, then u(n) - u(n-1) is in {1,2,3}, v(n) - v(n-1) is in {2,4,5}, and w(n) - w(n-1) is in {4,7,9}. (u = A277736, v = A277737, w = A277738). (End)
Although I believe the assertions in Kimberling's comment above to be correct, these results are quite tricky to prove, and unless a formal proof is supplied at present these assertions must be regarded as conjectures. - N. J. A. Sloane, Aug 20 2018
From Michel Dekking, Oct 03 2019: (Start)
Here is a proof of Clark Kimberling's conjectures (and more).
The incidence matrix of the defining morphism
sigma: 0 -> 01, 1 -> 20, 2 -> 0
is the same as the incidence matrix of the tribonacci morphism
0 -> 01, 1 -> 02, 2 -> 0
(see A080843 and/or A092782).
This implies that the frequencies f0, f1 and f2 of the letters 0,1, and 2 in (a(n)) are the same as the corresponding frequencies in the tribonacci word, which are 1/t, 1/t^2 and 1/t^3 (see, e.g., A092782).
Since U = 1/f0, V = 1/f1, and W = 1/f2, we conclude that
U = t = A058265, V = t^2 = A276800 and W = t^3 = A276801.
The statements on the difference sequences u, v, and w of the positions of 0,1, and 2 are easily verified by applying sigma to the return words of these three letters.
Here the return words of an arbitrary word w in a sequence x are all the words occurring in x with prefix w that do not have other occurrences of w in them.
The return words of 0 are 0, 01, and 012, which indeed have length 1, 2
and 3. Since
sigma(0) = 01, sigma(1) = 0120, and sigma(012) = 01200,
one sees that u is the unique fixed point of the morphism
1 -> 2, 2-> 31, 3 ->311.
With a little more work, passing to sigma^2, and rotating, one can show that v is the unique fixed point of the morphism
2->52, 4->5224, 5->52244 .
Similarly, w is the unique fixed point of the morphism
4->94, 7->9447, 9->94477.
Interestingly, the three morphisms having u,v, and w as fixed point are essentially the same morphism (were we replaced sigma by sigma^2) with standard form
1->12, 2->1223, 3->12233.
(End)
The kind of phenomenon observed at the end of the previous comment holds in a very strong way for the tribonacci word. See Theorem 5.1. in the paper by Huang and Wen. - Michel Dekking, Oct 04 2019

Crossrefs

Equals A100619(n)-1.

Programs

  • Maple
    with(ListTools);
    T:=proc(S) Flatten(subs( {0=[0,1], 1=[2,0], 2=[0]}, S)); end;
    S:=[0];
    for n from 1 to 10 do S:=T(S); od:
    S;
  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 10] (* A277735 *)
    Flatten[Position[s, 0]] (* A277736 *)
    Flatten[Position[s, 1]] (* A277737 *)
    Flatten[Position[s, 2]] (* A277738 *)
    (* Clark Kimberling, May 21 2017 *)

Extensions

Name clarified by Michel Dekking, Oct 03 2019

A287112 1-limiting word of the morphism 0->10, 1->20, 2->0.

Original entry on oeis.org

1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0
Offset: 1

Views

Author

Clark Kimberling, May 22 2017

Keywords

Comments

Starting with 0, the first 4 iterations of the morphism yield words shown here:
1st: 10
2nd: 2010
3rd: 0102010
4th: 1020100102010
The 1-limiting word is the limit of the words for which the number of iterations is congruent to 1 mod 3.
Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where
U = 1.8392867552141611325518525646532866...,
V = U^2 = 3.3829757679062374941227085364...,
W = U^3 = 6.2222625231203986266745611011....
If n >=2, then u(n) - u(n-1) is in {1,2}, v(n) - v(n-1) is in {2,3,4}, and w(n) - w(n-1) is in {4,6,7}.
From Michel Dekking, Mar 29 2019: (Start)
This sequence is one of the three fixed points of the morphism alpha^3, where alpha is the defining morphism
0->10, 1->20, 2->0.
The other two fixed points are A286998 and A287174.
We have alpha = rho(tau), where tau is the tribonacci morphism in A080843
0->01, 1->02, 2->0,
and rho is the rotation operator.
An eigenvector computation of the incidence matrix of the morphism gives that 0,1, and 2 have frequencies 1/t, 1/t^2 and 1/t^3, where t is the tribonacci constant A058265.
Apparently (u(n)) := A287113. Thus U, the limit of u(n)/n, equals 1/(1/t), the tribonacci constant t. Also, V = A276800, and W = A276801.
(End)

Examples

			1st iterate: 10
4th iterate: 1020100102010
7th iterate:  102010010201020100102010102010010201001020101020100102010201001020101020100102010.
		

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 10]   (* A287112 *)
    Flatten[Position[s, 0]] (* A287113 *)
    Flatten[Position[s, 1]] (* A287114 *)
    Flatten[Position[s, 2]] (* A287115 *)

A277721 a(n) = floor(n*t^3) - A003146(n), where t = 1.8392867... is the tribonacci constant A058265.

Original entry on oeis.org

2, 1, 1, 0, 3, 2, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 2, 2, 1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 2, 2, 1, 1, 0, 3, 2, 2, 1, 1, 1, 3, 2, 2, 2, 1, 1, 0, 2, 2, 2, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 2, 1, 0, 0, 0, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 0, 2, 2, 2, 1, 1, 0, 3, 2, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2016

Keywords

Comments

Always in the set {-1,0,1,2,3}, but first occurrence of -1 is at n = 2047. - Jeffrey Shallit, Nov 19 2016

Crossrefs

Previous Showing 11-14 of 14 results.