cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A375727 a(n) is the least number that is a Smith number in all bases 2 to n but not in base n+1.

Original entry on oeis.org

15, 475, 1023, 222, 1924475, 26910204, 191999912, 240365505, 10127638898, 15357419170
Offset: 2

Views

Author

Robert Israel, Aug 25 2024

Keywords

Examples

			a(3) = 475 = 5^2 * 19.
In base 2, 475 = 111011011_2 with digit sum 7, 5 = 101_2 with digit sum 2, 19 = 10011_2 with digit sum 3, and 7 = 2 * 2 + 3.
In base 3, 475 = 122121_3 with digit sum 9, 5 = 12_3 with digit sum 3, 19 = 201_3 with digit sum 3, and 9 = 2 * 3 + 3.
In base 4, 475 = 13123_4 with digit sum 10, 5 = 11_4 with digit sum 2, 19 = 103_4 with digit sum 4, and 10 <> 2 * 2 + 4.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F, t,b;
         if isprime(n) then return 0 fi;
         F:= ifactors(n)[2];
         for b from 2 while convert(convert(n,base,b),`+`) = add(t[2]*convert(convert(t[1],base,b),`+`), t = F) do od:
         if b = 2 then 0 else b-1 fi
    end proc:
    N:= 7: # for a(2) .. a(N)
    V:= Vector(N): count:= 0:
    for n from 4 while count < N-1 do
      v:= f(n);
      if v > 0 and V[v] = 0 then V[v]:= n; count:= count+1 fi;
    od:
    convert(V[2..N],list);
  • PARI
    smith(k) = {my(f = factor(k), p = f[,1], e = f[,2], b = 2); while(sumdigits(k, b) == sum(i = 1, #p, e[i] * sumdigits(p[i], b)), b++); b-1;}
    lista(len) = {my(m = len + 1, v = vector(m), c = 0, i); forcomposite(k = 1, , i = smith(k); if(i <= m && v[i] == 0, c++; v[i] = k; if(c == m, break))); vecextract(v, "^1");} \\ Amiram Eldar, Aug 29 2024
  • Python
    from sympy.ntheory import digits
    from sympy import factorint, isprime
    from itertools import count, islice
    def sd(n, base=10): return sum(digits(n, base)[1:])
    def f(n, factors):
        for b in count(2):
            if sd(n, base=b) != sum(sd(p, base=b)*factors[p] for p in factors):
                break
        return b-1
    def agen(): # generator of terms
        adict, n = dict(), 2
        for k in count(1):
            if isprime(k): continue
            v = f(k, factorint(k))
            if v not in adict: adict[v] = k
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 4))) # Michael S. Branicky, Aug 25 2024
    

Extensions

a(8)-a(9) from Michael S. Branicky, Aug 26 2024
a(10)-a(11) from Amiram Eldar, Aug 29 2024
Previous Showing 11-11 of 11 results.