A299778
Irregular triangle read by rows: T(n,k) is the part that is adjacent to the k-th peak of the largest Dyck path of the symmetric representation of sigma(n), or T(n,k) = 0 if the mentioned part is already associated to a previous peak or if there is no part adjacent to the k-th peak, with n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 2, 2, 7, 0, 3, 3, 12, 0, 0, 4, 0, 4, 15, 0, 0, 5, 3, 5, 9, 0, 9, 0, 6, 0, 0, 6, 28, 0, 0, 0, 7, 0, 0, 7, 12, 0, 12, 0, 8, 8, 0, 0, 8, 31, 0, 0, 0, 0, 9, 0, 0, 0, 9, 39, 0, 0, 0, 0, 10, 0, 0, 0, 10, 42, 0, 0, 0, 0, 11, 5, 0, 5, 0, 11, 18, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 12, 60, 0, 0, 0, 0, 0, 13, 0, 5, 0, 0, 13
Offset: 1
Triangle begins (rows 1..28):
1;
3;
2, 2;
7, 0;
3, 3;
12, 0, 0;
4, 0, 4;
15, 0, 0;
5, 3, 5;
9, 0, 9, 0;
6, 0, 0, 6;
28, 0, 0, 0;
7, 0, 0, 7;
12, 0, 12, 0;
8, 8, 0, 0, 8;
31, 0, 0, 0, 0;
9, 0, 0, 0, 9;
39, 0, 0, 0, 0;
10, 0, 0, 0, 10;
42, 0, 0, 0, 0;
11, 5, 0, 5, 0, 11;
18, 0, 0, 0, 18, 0;
12, 0, 0, 0, 0, 12;
60, 0, 0, 0, 0, 0;
13, 0, 5, 0, 0, 13;
21, 0, 0, 0 21, 0;
14, 6, 0, 6, 0, 14;
56, 0, 0, 0, 0, 0, 0;
...
Illustration of first 50 terms (rows 1..16 of triangle) in an irregular spiral which can be find in the top view of the pyramid described in A244050:
.
. 12 _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
. | | |_ _ _ _ _ _ _|
. 0 _| | |
. |_ _|9 _ _ _ _ _ _ |_ _ 0
. 12 _ _| | _ _ _ _ _|_ _ _ _ _ 5 |_ 0
. 0 _ _ _| | 0 _| | |_ _ _ _ _| |
. | _ _ _| 9 _|_ _| |_ _ 3 |_ _ _ 7
. | | 0 _ _| | 12 _ _ _ _ |_ | | |
. | | | _ _| 0 _| _ _ _|_ _ _ 3 |_|_ _ 5 | |
. | | | | 0 _| | |_ _ _| | | | |
. | | | | | _ _| |_ _ 3 | | | |
. | | | | | | 3 _ _ | | | | | |
. | | | | | | | _|_ 1 | | | | | |
. _|_| _|_| _|_| _|_| |_| _|_| _|_| _|_| _
. | | | | | | | | | | | | | | | |
. | | | | | | |_|_ _ _| | | | | | | |
. | | | | | | 2 |_ _|_ _| _| | | | | | |
. | | | | |_|_ 2 |_ _ _| 0 _ _| | | | | |
. | | | | 4 |_ 7 _| _ _|0 | | | |
. | | |_|_ _ 0 |_ _ _ _ | _| _ _ _| | | |
. | | 6 |_ |_ _ _ _|_ _ _ _| | 0 _| _ _|0 | |
. |_|_ _ _ 0 |_ 4 |_ _ _ _ _| _| | _ _ _| |
. 8 | |_ _ 0 | 15| _| | _ _ _|
. |_ | |_ _ _ _ _ _ | _ _| 0 _| | 0
. 8 |_ |_ |_ _ _ _ _ _|_ _ _ _ _ _| | 0 _| _|
. 0 |_ _| 6 |_ _ _ _ _ _ _| _ _| _| 0
. 0 | 28| _ _| 0
. |_ _ _ _ _ _ _ _ | | 0
. |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
. 8 |_ _ _ _ _ _ _ _ _|
. 31
.
The diagram contains A237590(16) = 27 parts.
For the construction of the spiral see A239660.
The number of nonzero terms in row n is
A237271(n).
The triangle with n rows contain
A237590(n) nonzero terms.
Cf.
A024916,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A239657,
A239660,
A239931-
A239934,
A240542,
A244050,
A245092,
A250068,
A250070,
A261699,
A262626,
A279387,
A279388,
A279391,
A280850,
A280851.
A317292
a(n) is the total number of edges after n-th stage in the diagram of the symmetries of sigma in which the parts of width > 1 are dissected into subparts of width 1, with a(0) = 0.
Original entry on oeis.org
0, 4, 8, 14, 20, 26, 36, 42, 50, 60, 70, 76, 92, 98, 108, 124, 136, 142, 160, 166, 182, 198, 208, 214, 238, 250, 260, 276, 294, 300
Offset: 0
Illustration of initial terms (n = 1..9):
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| |_ _ _| |_|_
. _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ |
. _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
. |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 4 8 14 20 26 36
.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _ _ _ |_ _
. |_ _ _ _| |_ _ _ _| |_ |_ _ _ _| |_ |
. |_ _ _ |_ |_ _ _ |_ |_ _ |_ _ _ |_ |_|_ _
. |_ _ _| |_|_ _ |_ _ _| |_|_ _ | |_ _ _| |_|_ _ | |
. |_ _ |_ _ | | |_ _ |_ _ | | | |_ _ |_ _ | | | |
. |_ _|_ | | | | |_ _|_ | | | | | |_ _|_ | | | | | |
. |_ | | | | | | |_ | | | | | | | |_ | | | | | | | |
. |_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_|
.
. 42 50 60
.
.
Illustration of the two-dimensional diagram after 29 stages (contains 300 edges, 239 vertices and 62 regions or subparts):
._ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
|_ _ _ _ _ _ _ _ _ _ _ _ _ | |
|_ _ _ _ _ _ _ _ _ _ _ _ _| | |
|_ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _
|_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ | | |_ _ | |_
|_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_ |_
|_ _ _ _ _ _ _ _ _ _ | | |_ _ |_ _| |_|_
|_ _ _ _ _ _ _ _ _ _| | |_ _ | |_ |_ _ |_ _
|_ _ _ _ _ _ _ _ _ | |_ _ _| |_ |_ | |_ _ |
|_ _ _ _ _ _ _ _ _| | |_ _ |_ |_ |_|_ _ | |
|_ _ _ _ _ _ _ _ | |_ _ |_ _|_ |_ _ | | | |_ _ _ _ _ _
|_ _ _ _ _ _ _ _| | |_ _| |_ | |_ _ | | |_|_ _ _ _ _ | |
|_ _ _ _ _ _ _ | |_ _ |_ |_|_ | | |_|_ _ _ _ _ | | | |
|_ _ _ _ _ _ _| |_ _ |_ |_ _ | | |_ _ _ _ _ | | | | | |
|_ _ _ _ _ _ | |_ |_ |_ | | |_|_ _ _ _ | | | | | | | |
|_ _ _ _ _ _| |_ _| |_|_ | |_|_ _ _ _ | | | | | | | | | |
|_ _ _ _ _ | |_ |_ _ | |_ _ _ _ | | | | | | | | | | | |
|_ _ _ _ _| |_ |_ | |_|_ _ _ | | | | | | | | | | | | | |
|_ _ _ _ |_ _|_ |_|_ _ _ | | | | | | | | | | | | | | | |
|_ _ _ _| |_ | |_ _ _ | | | | | | | | | | | | | | | | | |
|_ _ _ |_ |_|_ _ | | | | | | | | | | | | | | | | | | | |
|_ _ _| |_|_ _ | | | | | | | | | | | | | | | | | | | | | |
|_ _ |_ _ | | | | | | | | | | | | | | | | | | | | | | | |
|_ _|_ | | | | | | | | | | | | | | | | | | | | | | | | | |
|_ | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
For the definition of "subparts" see
A279387.
For the triangle of sums of subparts see
A279388.
Cf.
A060831 (number of regions or subparts).
Compare with
A317109 (analog for the diagram that contains only parts).
First differs from
A317109 at a(6).
Cf.
A000203,
A001227,
A196020,
A235791,
A237048,
A237590,
A237591,
A237270,
A237271,
A237593,
A245092,
A244050,
A262626,
A280850,
A280851,
A280940,
A285901,
A294723,
A296508.
A317293
a(n) is the total number of vertices after n-th stage in the diagram of the symmetries of sigma in which the parts of width > 1 are dissected into subparts of width 1, with a(0) = 1.
Original entry on oeis.org
1, 4, 7, 11, 16, 20, 28, 32, 39, 46, 54, 58, 72, 76, 84, 96, 107, 111, 126, 130, 144, 156, 164, 168, 190, 199, 207, 219, 235, 239
Offset: 0
Illustration of initial terms (n = 0..9):
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| |_ _ _| |_|_
. _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ |
. _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
. . |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 1 4 7 11 16 20 28
.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _ _ _ |_ _
. |_ _ _ _| |_ _ _ _| |_ |_ _ _ _| |_ |
. |_ _ _ |_ |_ _ _ |_ |_ _ |_ _ _ |_ |_|_ _
. |_ _ _| |_|_ _ |_ _ _| |_|_ _ | |_ _ _| |_|_ _ | |
. |_ _ |_ _ | | |_ _ |_ _ | | | |_ _ |_ _ | | | |
. |_ _|_ | | | | |_ _|_ | | | | | |_ _|_ | | | | | |
. |_ | | | | | | |_ | | | | | | | |_ | | | | | | | |
. |_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_|
.
. 32 39 46
.
.
Illustration of the two-dimensional diagram after 29 stages (contains 239 vertices, 300 edges and 62 regions or subparts):
._ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ _ _ | |
|_ _ _ _ _ _ _ _ _ _ _ _ _| | |
|_ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _
|_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ | | |_ _ | |_
|_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_ |_
|_ _ _ _ _ _ _ _ _ _ | | |_ _ |_ _| |_|_
|_ _ _ _ _ _ _ _ _ _| | |_ _ | |_ |_ _ |_ _
|_ _ _ _ _ _ _ _ _ | |_ _ _| |_ |_ | |_ _ |
|_ _ _ _ _ _ _ _ _| | |_ _ |_ |_ |_|_ _ | |
|_ _ _ _ _ _ _ _ | |_ _ |_ _|_ |_ _ | | | |_ _ _ _ _ _
|_ _ _ _ _ _ _ _| | |_ _| |_ | |_ _ | | |_|_ _ _ _ _ | |
|_ _ _ _ _ _ _ | |_ _ |_ |_|_ | | |_|_ _ _ _ _ | | | |
|_ _ _ _ _ _ _| |_ _ |_ |_ _ | | |_ _ _ _ _ | | | | | |
|_ _ _ _ _ _ | |_ |_ |_ | | |_|_ _ _ _ | | | | | | | |
|_ _ _ _ _ _| |_ _| |_|_ | |_|_ _ _ _ | | | | | | | | | |
|_ _ _ _ _ | |_ |_ _ | |_ _ _ _ | | | | | | | | | | | |
|_ _ _ _ _| |_ |_ | |_|_ _ _ | | | | | | | | | | | | | |
|_ _ _ _ |_ _|_ |_|_ _ _ | | | | | | | | | | | | | | | |
|_ _ _ _| |_ | |_ _ _ | | | | | | | | | | | | | | | | | |
|_ _ _ |_ |_|_ _ | | | | | | | | | | | | | | | | | | | |
|_ _ _| |_|_ _ | | | | | | | | | | | | | | | | | | | | | |
|_ _ |_ _ | | | | | | | | | | | | | | | | | | | | | | | |
|_ _|_ | | | | | | | | | | | | | | | | | | | | | | | | | |
|_ | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
For the definition of "subparts" see
A279387.
For the triangle of sums of subparts see
A279388.
Cf.
A060831 (number of regions or subparts).
Compare with
A294723 (analog for the diagram that contains only parts).
First differs from
A294723 at a(6).
Cf.
A000203,
A196020,
A235791,
A237048,
A237590,
A237591,
A237270,
A237271,
A237593,
A245092,
A244050,
A262626,
A280850,
A280851,
A280940,
A285901,
A296508,
A317109.
A279667
Number of subparts (also number of odd divisors) of the smallest number k such that the symmetric representation of sigma(k) has n layers.
Original entry on oeis.org
1, 2, 4, 4, 6, 8, 8, 12, 12, 12, 16, 24, 24, 18, 32, 32, 24, 36, 24, 36, 32, 48, 36, 32, 48, 48, 48
Offset: 1
For n = 5 we have that 360 is the smallest number k whose symmetric representation of sigma(k) has parts of width 5. The structure has six subparts: [719, 237, 139, 71, 2, 2]. On the other hand, 360 has six odd divisors: {1, 3, 5, 9, 15, 45}, so a(5) = 6.
Cf.
A000203,
A001227,
A005279,
A196020,
A236104,
A235791,
A237048,
A237270,
A237271,
A237591,
A237593,
A239657,
A244050,
A245092,
A250070,
A261699,
A279387,
A279388,
A279391.
A302248
Irregular triangle read by rows in which the odd-indexed terms of the n-th row together with the even-indexed terms of the same row but listed in reverse order give the n-th row of triangle A299778.
Original entry on oeis.org
1, 3, 2, 2, 7, 0, 3, 3, 12, 0, 0, 4, 4, 0, 15, 0, 0, 5, 5, 3, 9, 0, 0, 9, 6, 6, 0, 0, 28, 0, 0, 0, 7, 7, 0, 0, 12, 0, 0, 12, 8, 8, 8, 0, 0, 31, 0, 0, 0, 0, 9, 9, 0, 0, 0, 39, 0, 0, 0, 0, 10, 10, 0, 0, 0, 42, 0, 0, 0, 0, 11, 11, 5, 0, 0, 5, 18, 0, 0, 18, 0, 0, 12, 12, 0, 0, 0, 0, 60, 0, 0, 0, 0, 0, 13, 13, 0, 0, 5, 0
Offset: 1
Triangle begins (rows 1..28):
1;
3;
2, 2;
7, 0;
3, 3;
12, 0, 0;
4, 4, 0;
15, 0, 0;
5, 5, 3;
9, 0, 0, 9;
6, 6, 0, 0;
28, 0, 0, 0;
7, 7, 0, 0;
12, 0, 0, 12;
8, 8, 8, 0, 0;
31, 0, 0, 0, 0;
9, 9, 0, 0, 0;
39, 0, 0, 0, 0;
10, 10, 0, 0, 0;
42, 0, 0, 0, 0;
11, 11, 5, 0, 0, 5;
18, 0, 0, 18, 0, 0;
12, 12, 0, 0, 0, 0;
60, 0, 0, 0, 0, 0;
13, 13, 0, 0, 5, 0;
21, 0, 0, 21, 0, 0;
14, 14, 6, 0, 0, 6;
56, 0, 0, 0, 0, 0, 0;
...
For n = 21 the 21st row of A299778 is [11, 5, 0, 5, 0, 11], so the 21st row of this triangle is [11, 11, 5, 0, 0, 5].
The number of nonzero terms in row n is
A237271(n).
The triangle with n rows contain
A237590(n) nonzero terms.
Cf.
A196020,
A235791,
A236104,
A237048,
A237270,
A237591,
A237593,
A239660,
A240542,
A244050,
A245092,
A262626,
A279387,
A279388,
A280851,
A299778.
Comments