A338139 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x^2 + 26*y^2 - 11*x*y a power of two (including 2^0 = 1), where x, y, z, w are nonnegative integers with z <= w.
1, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 3, 4, 3, 2, 4, 6, 3, 5, 6, 4, 2, 4, 4, 5, 4, 4, 4, 6, 2, 2, 7, 5, 3, 6, 5, 4, 3, 5, 7, 8, 1, 4, 8, 4, 2, 4, 5, 6, 4, 5, 5, 6, 4, 4, 8, 5, 2, 6, 4, 3, 3, 2, 8, 11, 3, 5, 11, 6, 1, 6, 8, 7, 5, 4, 6, 5, 1, 5, 10, 10, 5, 9, 8, 5, 4, 4, 8, 14, 5, 5, 8, 4, 4, 4, 6, 7, 5, 7
Offset: 1
Keywords
Examples
a(1) = 1, and 1 = 1^2 + 0^2 + 0^2 + 0^2 with 1^2 + 26*0^2 - 11*1*0 = 2^0. a(43) = 1, and 43 = 1^2 + 1^2 + 4^2 + 5^2 with 1^2 + 26*1^2 - 11*1*1 = 2^4. a(6547) = 1, and 6547 = 17^2 + 1^2 + 4^2 + 79^2 with 17^2 + 26*1^2 - 11*17*1 = 2^7. a(11843) = 1, and 11843 = 3^2 + 1^2 + 13^2 + 108^2 with 3^2 + 26*1^2 - 11*3*1 = 2^1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
- Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
- Zhi-Wei Sun, Sums of four squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; PQ[n_]:=PQ[n]=n>0&&IntegerQ[Log[2,n]]; tab={};Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&PQ[x^2+26*y^2-11*x*y],r=r+1],{x,0,Sqrt[n]},{y,Boole[x==0],Sqrt[n-x^2]},{z,0,Sqrt[(n-x^2-y^2)/2]}];tab=Append[tab,r],{n,1,100}];tab
Comments