cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A279971 Number of n X 2 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

1, 3, 9, 31, 108, 366, 1205, 3873, 12207, 37859, 115842, 350412, 1049545, 3116655, 9185349, 26890375, 78253896, 226510362, 652483133, 1871302893, 5345409483, 15213423371, 43153001406, 122024489304, 344061371665, 967537410459
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Examples

			Some solutions for n=4:
..0..0. .0..1. .0..1. .0..1. .0..1. .0..1. .0..0. .0..0. .0..0. .0..0
..1..1. .0..0. .1..0. .1..1. .0..1. .1..0. .1..0. .1..0. .1..1. .1..0
..1..0. .0..1. .0..0. .1..0. .0..1. .1..0. .1..0. .1..1. .0..0. .1..1
..0..1. .0..0. .0..1. .0..1. .1..1. .0..0. .1..1. .1..0. .0..1. .0..0
		

Crossrefs

Column 2 of A279977.

Formula

Empirical: a(n) = 9*a(n-1) - 30*a(n-2) + 45*a(n-3) - 30*a(n-4) + 9*a(n-5) -a(n-6).
Empirical g.f.: x*(1 - 2*x)*(1 - 4*x + 4*x^2 + 3*x^3) / (1 - 3*x + x^2)^3. - Colin Barker, Feb 12 2019

A279972 Number of n X 3 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 9, 50, 296, 1650, 8666, 43543, 211650, 1002602, 4652327, 21225237, 95473540, 424318824, 1866436977, 8136431834, 35191126234, 151149336828, 645183934470, 2738696392197, 11567109056460, 48632928912442, 203627897130121
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..1. .0..1..0. .0..1..0. .0..1..0. .0..1..1. .0..1..1. .0..0..1
..0..0..1. .1..1..1. .1..0..0. .1..1..1. .0..0..1. .0..1..1. .1..0..1
..1..0..0. .0..0..1. .0..1..1. .0..0..1. .1..1..1. .1..0..0. .0..1..1
..1..1..1. .1..1..0. .1..0..0. .0..0..1. .0..1..0. .1..1..0. .1..0..1
		

Crossrefs

Column 3 of A279977.

Formula

Empirical: a(n) = 15*a(n-1) - 90*a(n-2) + 281*a(n-3) - 510*a(n-4) + 585*a(n-5) - 437*a(n-6) + 210*a(n-7) - 60*a(n-8) + 8*a(n-9) for n>10.
Empirical g.f.: x^2*(9 - 85*x + 356*x^2 - 819*x^3 + 1096*x^4 - 888*x^5 + 438*x^6 - 124*x^7 + 16*x^8) / (1 - 5*x + 5*x^2 - 2*x^3)^3. - Colin Barker, Feb 12 2019

A279973 Number of nX4 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

3, 24, 221, 1922, 15511, 118857, 876704, 6281773, 43997218, 302544617, 2049122034, 13702872583, 90643155972, 593994248709, 3860755349595, 24913212937078, 159737403339158, 1018352525988640, 6458838814490585, 40774568909571868
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Comments

Column 4 of A279977.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..0..0
..1..1..0..1. .0..0..1..1. .1..0..1..0. .0..0..1..0. .0..1..1..1
..1..0..1..1. .0..0..0..1. .1..0..0..1. .0..1..1..0. .0..0..1..0
..0..1..0..1. .0..1..0..1. .0..1..0..0. .1..0..0..1. .1..1..0..1
		

Crossrefs

Cf. A279977.

Formula

Empirical: a(n) = 30*a(n-1) -399*a(n-2) +3163*a(n-3) -17061*a(n-4) +67920*a(n-5) -210660*a(n-6) +527724*a(n-7) -1093560*a(n-8) +1904479*a(n-9) -2816082*a(n-10) +3556545*a(n-11) -3846177*a(n-12) +3560349*a(n-13) -2812614*a(n-14) +1885732*a(n-15) -1064382*a(n-16) +500283*a(n-17) -192971*a(n-18) +59883*a(n-19) -14538*a(n-20) +2649*a(n-21) -339*a(n-22) +27*a(n-23) -a(n-24)

A279974 Number of nX5 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

3, 62, 822, 10491, 124030, 1393359, 15071233, 158391708, 1627160233, 16409869901, 162982613326, 1598047779214, 15497697410287, 148874926975376, 1418326347449973, 13414045478319926, 126045765506261814
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Comments

Column 5 of A279977.

Examples

			Some solutions for n=4
..0..1..1..1..0. .0..1..0..0..0. .0..1..0..0..1. .0..0..1..0..1
..0..0..0..1..1. .0..1..0..1..1. .0..1..1..1..0. .1..1..0..1..0
..0..1..0..0..1. .0..0..0..0..1. .1..0..1..1..0. .0..0..1..1..1
..0..1..1..0..1. .0..1..0..1..0. .1..0..0..1..1. .1..0..1..0..1
		

Crossrefs

Cf. A279977.

Formula

Empirical: a(n) = 53*a(n-1) -1291*a(n-2) +19418*a(n-3) -204835*a(n-4) +1632329*a(n-5) -10324115*a(n-6) +53654890*a(n-7) -234937934*a(n-8) +882771616*a(n-9) -2885212091*a(n-10) +8285140483*a(n-11) -21058509124*a(n-12) +47630930849*a(n-13) -96230469370*a(n-14) +174085724937*a(n-15) -282388861308*a(n-16) +410961960219*a(n-17) -536498538568*a(n-18) +627876381653*a(n-19) -658110830698*a(n-20) +617080503289*a(n-21) -516968320637*a(n-22) +386461849324*a(n-23) -257438979196*a(n-24) +152574757688*a(n-25) -80292463252*a(n-26) +37420429652*a(n-27) -15389322205*a(n-28) +5557085609*a(n-29) -1749901992*a(n-30) +476005587*a(n-31) -110393019*a(n-32) +21427460*a(n-33) -3388972*a(n-34) +419408*a(n-35) -38032*a(n-36) +2240*a(n-37) -64*a(n-38) for n>39

A279975 Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

9, 134, 2669, 50690, 887491, 14787217, 237386464, 3703836674, 56499013470, 846166990079, 12481300976351, 181756380764316, 2617908346883386, 37350611059955815, 528493982152145690, 7423498639698400616
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Comments

Column 6 of A279977.

Examples

			Some solutions for n=4
..0..1..1..0..1..0. .0..1..0..1..0..0. .0..1..0..1..0..0. .0..1..0..1..1..1
..0..0..1..0..0..0. .0..1..0..1..1..0. .1..0..0..1..0..1. .1..1..0..1..0..1
..1..0..1..0..1..0. .0..0..1..0..1..1. .1..1..0..1..0..0. .0..1..1..0..1..1
..1..0..1..1..0..1. .1..0..0..0..1..0. .1..1..0..1..1..0. .1..0..1..0..0..1
		

Crossrefs

Cf. A279977.

Formula

Empirical recurrence of order 96 (see link above)

A279976 Number of n X 7 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 277, 8068, 226771, 5870751, 144819856, 3444870482, 79672440007, 1801951754910, 40020022178950, 875485447655303, 18909516686710743, 403990472666974061, 8549840572786983933, 179455644823143101693
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Comments

Column 7 of A279977.

Examples

			Some solutions for n=3
..0..0..1..0..1..0..1. .0..0..1..0..1..0..1. .0..0..1..0..1..1..0
..1..1..0..1..0..0..1. .1..0..0..1..1..0..1. .1..1..0..0..1..1..0
..0..1..1..1..0..1..0. .0..1..0..0..1..1..0. .0..1..1..0..0..1..0
		

Crossrefs

Cf. A279977.

A279978 Number of 2 X n 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 3, 9, 24, 62, 134, 277, 542, 1035, 1930, 3546, 6432, 11555, 20590, 36445, 64140, 112326, 195866, 340241, 589038, 1016671, 1749950, 3004610, 5147092, 8798911, 15012766, 25569393, 43477440, 73814414, 125140142, 211870477, 358260350
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..1..0. .0..1..0..1. .0..0..1..0. .0..1..1..0. .0..1..0..0
..0..1..1..0. .0..1..1..1. .1..1..1..0. .0..0..0..1. .1..1..1..0
		

Crossrefs

Row 2 of A279977.

Formula

Empirical: a(n) = 5*a(n-1) - 7*a(n-2) - 2*a(n-3) + 10*a(n-4) - 2*a(n-5) - 5*a(n-6) + a(n-7) + a(n-8) for n>10.
Empirical g.f.: x^2*(3 - 6*x + 11*x^3 - 20*x^4 + 5*x^5 + 12*x^6 + 2*x^7 - 5*x^8) / ((1 - x)^2*(1 - x - x^2)^3). - Colin Barker, Feb 12 2019

A279979 Number of 3 X n 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 9, 50, 221, 822, 2669, 8068, 23169, 64250, 173509, 459148, 1195219, 3069280, 7791834, 19587853, 48827241, 120818815, 297018329, 725970958, 1765237102, 4272245780, 10296018246, 24717636634, 59130589267, 140997069400, 335205034089, 794714054209, 1879307452216
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Comments

Row 3 of A279977.

Examples

			Some solutions for n=4:
..0..1..0..0. .0..1..0..0. .0..1..0..1. .0..0..0..1. .0..1..1..0
..0..1..0..1. .0..0..1..0. .1..1..1..1. .1..1..0..0. .0..0..1..1
..0..1..0..0. .1..1..0..1. .0..1..0..1. .1..0..1..0. .1..1..0..0
		

Crossrefs

Cf. A279977.

Formula

Empirical: a(n) = 9*a(n-1) -33*a(n-2) +60*a(n-3) -36*a(n-4) -78*a(n-5) +199*a(n-6) -165*a(n-7) -33*a(n-8) +200*a(n-9) -180*a(n-10) +66*a(n-11) +22*a(n-12) -78*a(n-13) +84*a(n-14) -40*a(n-15) -21*a(n-16) +15*a(n-17) -3*a(n-18) +18*a(n-19) +6*a(n-20) -4*a(n-21) -3*a(n-22) -3*a(n-23) -a(n-24) for n>30.

A279980 Number of 4Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 31, 296, 1922, 10491, 50690, 226771, 963728, 3941732, 15655280, 60749739, 231325874, 867192006, 3208394065, 11737643962, 42526452550, 152777627539, 544782076812, 1929805835927, 6795769111934, 23804414728200, 82983605105905
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Comments

Row 4 of A279977.

Examples

			Some solutions for n=4
..0..0..1..0. .0..1..1..0. .0..1..0..1. .0..1..1..0. .0..1..0..0
..1..0..0..1. .1..0..1..1. .1..0..1..0. .1..0..1..1. .0..1..0..1
..0..1..1..0. .1..0..0..1. .0..0..1..0. .1..1..0..0. .0..0..1..0
..0..0..1..1. .1..1..0..0. .1..0..0..1. .1..0..1..0. .1..1..0..1
		

Crossrefs

Cf. A279977.

Formula

Empirical recurrence of order 68 (see link above)

A279981 Number of 5Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 108, 1650, 15511, 124030, 887491, 5870751, 37029063, 224989656, 1329149598, 7678897522, 43562801122, 243417797716, 1342868232191, 7327618165054, 39607933952548, 212329659406086, 1129989079237450, 5974847669219636
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2016

Keywords

Comments

Row 5 of A279977.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..0..0..1. .0..1..0..1
..0..0..1..1. .0..1..0..1. .0..1..0..1. .0..1..0..0. .1..0..0..1
..0..1..0..0. .1..0..0..1. .1..0..1..1. .0..0..1..1. .1..1..1..1
..0..1..1..0. .1..0..1..1. .0..0..1..0. .1..1..0..1. .0..1..0..1
..0..1..0..1. .0..1..0..0. .1..0..1..0. .0..1..0..1. .0..1..1..0
		

Crossrefs

Cf. A279977.
Showing 1-10 of 13 results. Next