A318960
One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 1 (mod 4) case.
Original entry on oeis.org
1, 5, 5, 21, 53, 53, 181, 181, 181, 181, 181, 181, 181, 16565, 49333, 49333, 49333, 49333, 573621, 1622197, 1622197, 1622197, 10010805, 10010805, 10010805, 77119669, 211337397, 479772853, 479772853, 479772853, 2627256501, 6922223797, 15512158389, 15512158389
Offset: 2
The unique number k in [1, 4] and congruent to 1 modulo 4 such that k^2 + 7 is divisible by 8 is 1, so a(2) = 1.
a(2)^2 + 7 = 8 which is not divisible by 16, so a(3) = a(2) + 2^2 = 5.
a(3)^2 + 7 = 32 which is divisible by 32, so a(4) = a(3) = 5.
a(4)^2 + 7 = 32 which is divisible by 64, so a(5) = a(4) + 2^4 = 21.
a(5)^2 + 7 = 448 which is divisible by 128, so a(6) = a(5) + 2^5 = 53.
...
Expansions of p-adic integers:
this sequence,
A318961 (2-adic, sqrt(-7));
Also expansions of 10-adic integers:
A318961
One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 3 (mod 4) case.
Original entry on oeis.org
3, 3, 11, 11, 11, 75, 75, 331, 843, 1867, 3915, 8011, 16203, 16203, 16203, 81739, 212811, 474955, 474955, 474955, 2572107, 6766411, 6766411, 23543627, 57098059, 57098059, 57098059, 57098059, 593968971, 1667710795, 1667710795, 1667710795, 1667710795, 18847579979
Offset: 2
The unique number k in [1, 4] and congruent to 3 modulo 4 such that k^2 + 7 is divisible by 8 is 3, so a(2) = 3.
a(2)^2 + 7 = 16 which is divisible by 16, so a(3) = a(2) = 3.
a(3)^2 + 7 = 16 which is not divisible by 32, so a(4) = a(3) + 2^3 = 11.
a(4)^2 + 7 = 128 which is divisible by 64, so a(5) = a(4) = 11.
a(5)^2 + 7 = 128 which is divisible by 128, so a(6) = a(5) = 11.
...
Expansions of p-adic integers:
A318960, this sequence (2-adic, sqrt(-7));
Also expansions of 10-adic integers:
A322701
The successive approximations up to 2^n for 2-adic integer 3^(1/3).
Original entry on oeis.org
0, 1, 3, 3, 11, 27, 59, 123, 123, 379, 379, 379, 379, 4475, 12667, 29051, 61819, 127355, 127355, 127355, 127355, 127355, 2224507, 2224507, 2224507, 19001723, 52556155, 119665019, 253882747, 253882747, 253882747, 1327624571, 3475108219, 7770075515
Offset: 0
11^3 = 1331 = 83*2^4 + 3;
27^3 = 19683 = 615*2^5 + 3;
59^3 = 205379 = 3209*2^6 + 3.
For the digits of 3^(1/3), see
A323000.
Approximations of p-adic cubic roots:
this sequence (2-adic, 3^(1/3));
A322926
The successive approximations up to 2^n for 2-adic integer 5^(1/3).
Original entry on oeis.org
0, 1, 1, 5, 13, 29, 29, 93, 93, 93, 605, 1629, 3677, 3677, 3677, 20061, 20061, 20061, 151133, 151133, 151133, 151133, 151133, 4345437, 4345437, 21122653, 54677085, 54677085, 188894813, 457330269, 457330269, 457330269, 2604813917, 6899781213, 6899781213
Offset: 0
13^3 = 2197 = 137*2^4 + 5;
29^3 = 24389 = 762*2^5 + 5 = 381*2^6 + 5;
93^3 = 804357 = 6284*2^7 + 5 = 3142*2^8 + 5 = 1571*2^9 + 5.
For the digits of 5^(1/3), see
A323045.
Approximations of p-adic cubic roots:
this sequence (2-adic, 5^(1/3));
A322934
The successive approximations up to 2^n for 2-adic integer 7^(1/3).
Original entry on oeis.org
0, 1, 3, 7, 7, 23, 23, 23, 151, 407, 407, 1431, 3479, 3479, 11671, 11671, 44439, 109975, 241047, 503191, 1027479, 2076055, 2076055, 6270359, 6270359, 6270359, 6270359, 6270359, 6270359, 274705815, 811576727, 1885318551, 1885318551, 6180285847
Offset: 0
7^3 = 343 = 21*2^4 + 7;
23^3 = 12167 = 380*2^5 + 7 = 190*2^6 + 7 = 95*2^7 + 7;
151^3 = 3442951 = 13449*2^8 + 7.
For the digits of 7^(1/3), see
A323095.
Approximations of p-adic cubic roots:
this sequence (2-adic, 7^(1/3));
A322999
The successive approximations up to 2^n for 2-adic integer 9^(1/3).
Original entry on oeis.org
0, 1, 1, 1, 9, 25, 25, 25, 25, 281, 281, 281, 281, 4377, 4377, 20761, 53529, 53529, 184601, 446745, 971033, 2019609, 4116761, 8311065, 8311065, 25088281, 58642713, 125751577, 259969305, 259969305, 259969305, 259969305, 259969305, 4554936601, 13144871193
Offset: 0
9^3 = 729 = 45*2^4 + 9;
25^3 = 15625 = 488*2^5 + 9 = 244*2^6 + 9 = 122*2^7 + 9 = 61*2^8 + 9;
281^3 = 22188041 = 43336*2^9 + 9 = 21668*2^10 + 9 = 10834*2^11 + 9 = 5417*2^12 + 9.
For the digits of 9^(1/3), see
A323096.
Approximations of p-adic cubic roots:
this sequence (2-adic, 9^(1/3));
Comments