cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-57 of 57 results.

A325758 Irregular triangle read by rows giving the frequency span signature of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 3, 3, 1, 1, 1, 5, 3, 1, 3, 1, 1, 2, 2, 1, 4, 1, 1, 4, 4, 1, 5, 2, 1, 2, 2, 1, 3, 1, 1, 1, 6, 2, 1, 1, 2, 3, 1, 1, 3, 1, 5, 2, 1, 1, 4, 1, 2, 1, 5, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 2, 5, 1, 3, 1, 1, 2, 2, 1, 6, 1, 2, 1, 4, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the frequency span of an integer partition to be the partition itself if it has no or only one block, and otherwise it is the multiset union of the partition and the frequency span of its multiplicities. For example, the frequency span of (3,2,2,1) is {1,2,2,3} U {1,1,2} U {1,2} U {1,1} U {2} = {1,1,1,1,1,1,2,2,2,2,2,3}. The frequency span of a positive integer is the frequency span of its prime indices (row n of A296150). Row n of this triangle gives an unsorted list of the multiplicities in the frequency span of n. For example, the frequency span of 30 is {1,1,1,1,2,3,3}, so row 30 is (4,1,2).

Examples

			Triangle begins:
  1
  1
  2 1
  1
  3 2
  1
  3 1
  3
  3 1 1
  1
  5 3
  1
  3 1 1
  2 2 1
  4 1
  1
  4 4
  1
  5 2 1
  2 2 1
  3 1 1
  1
  6 2 1
  1 2
  3 1 1
  3 1
  5 2 1
  1
  4 1 2
		

Crossrefs

Row sums are A325249.
Row lengths are A325759.
Run-lengths of A325757.
Row n is the unsorted prime signature of A325760(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    freqspan[ptn_]:=If[Length[ptn]<=1,ptn,Sort[Join[ptn,freqspan[Sort[Length/@Split[ptn]]]]]];
    Table[Length/@Split[freqspan[primeMS[n]]],{n,30}]

A358457 Numbers k such that the k-th standard ordered rooted tree is transitive (counted by A358453).

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 15, 16, 25, 27, 28, 30, 31, 32, 50, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 99, 100, 105, 106, 107, 108, 109, 110, 111, 112, 114, 117, 118, 119, 120, 121, 123, 124, 126, 127, 128, 198, 199, 200, 210, 211, 212, 213, 214, 215, 216, 217, 218
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be transitive if every branch of a branch of the root already appears farther to the left as a branch of the root.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding ordered trees begin:
   1: o
   2: (o)
   4: (oo)
   7: (o(o))
   8: (ooo)
  14: (o(o)o)
  15: (oo(o))
  16: (oooo)
  25: (o(oo))
  27: (o(o)(o))
  28: (o(o)oo)
  30: (oo(o)o)
  31: (ooo(o))
  32: (ooooo)
  50: (o(oo)o)
  53: (o(o)((o)))
  54: (o(o)(o)o)
  55: (o(o)o(o))
		

Crossrefs

The unordered version is A290822, counted by A290689.
These trees are counted by A358453.
The undirected version is A358458, counted by A358454.
A000108 counts ordered rooted trees, unordered A000081.
A306844 counts anti-transitive rooted trees.
A324766 ranks recursively anti-transitive rooted trees, counted by A324765.
A358455 counts recursively anti-transitive ordered rooted trees.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],Composition[Function[t,And@@Table[Complement[t[[k]],Take[t,k]]=={},{k,Length[t]}]],srt]]

A317964 Prime numbers in the lexicographically earliest sequence of positive integers whose prime indices are not already in the sequence (A304360).

Original entry on oeis.org

2, 5, 13, 17, 23, 31, 37, 43, 47, 61, 67, 73, 79, 89, 103, 107, 109, 113, 137, 149, 151, 163, 167, 179, 181, 193, 197, 223, 227, 233, 241, 251, 257, 263, 269, 271, 277, 281, 307, 317, 347, 349, 353, 359, 379, 383, 389, 397, 419, 421, 431, 433, 449, 457, 463, 467, 487, 499, 503, 509, 521, 523, 547
Offset: 1

Views

Author

N. J. A. Sloane, Aug 26 2018

Keywords

Comments

Also primes whose prime index is not in A304360, or is in A324696. A prime index of n is a number m such that prime(m) divides n. - Gus Wiseman, Mar 19 2019

Crossrefs

Programs

  • Maple
    count:= 0:
    P:= {}: A:= NULL:
    for n from 2 while count < 100 do
      pn:= numtheory:-factorset(n);
      if pn intersect P = {} then
        P:= P union {ithprime(n)};
        if isprime(n) then A:= A, n; count:= count+1 fi;
      fi
    od:
    A; # Robert Israel, Aug 26 2018
  • Mathematica
    aQ[n_]:=n==1||Or@@Cases[FactorInteger[n],{p_,_}:>!aQ[PrimePi[p]]];
    Prime[Select[Range[100],aQ]] (* Gus Wiseman, Mar 19 2019 *)

A324842 Matula-Goebel numbers of rooted trees where the branches of any branch of any terminal subtree form a submultiset of the branches of the same subtree.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 28, 32, 36, 48, 54, 56, 64, 72, 78, 84, 96, 108, 112, 128, 144, 152, 156, 162, 168, 192, 196, 216, 224, 234, 252, 256, 288, 304, 312, 324, 336, 384, 392, 432, 444, 448, 456, 468, 486, 504, 512, 576, 588, 608, 624, 648, 672, 702
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Examples

			The sequence of rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
  12: (oo(o))
  16: (oooo)
  18: (o(o)(o))
  24: (ooo(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  48: (oooo(o))
  54: (o(o)(o)(o))
  56: (ooo(oo))
  64: (oooooo)
  72: (ooo(o)(o))
  78: (o(o)(o(o)))
  84: (oo(o)(oo))
  96: (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    qaQ[n_]:=And[And@@Table[Divisible[n,x],{x,primeMS[n]}],And@@qaQ/@primeMS[n]];
    Select[Range[1000],qaQ]

A324855 Lexicographically earliest sequence containing 2 and all squarefree numbers > 2 whose prime indices already belong to the sequence.

Original entry on oeis.org

2, 3, 5, 11, 15, 31, 33, 47, 55, 93, 127, 137, 141, 155, 165, 211, 235, 257, 341, 381, 411, 465, 487, 517, 633, 635, 685, 705, 709, 771, 773, 811, 907, 977, 1023, 1055, 1285, 1297, 1397, 1457, 1461, 1483, 1507, 1551, 1621, 1705, 1905, 2055, 2127, 2293, 2319
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   15: {2,3}
   31: {11}
   33: {2,5}
   47: {15}
   55: {3,5}
   93: {2,11}
  127: {31}
  137: {33}
  141: {2,15}
  155: {3,11}
  165: {2,3,5}
  211: {47}
  235: {3,15}
  257: {55}
  341: {5,11}
  381: {2,31}
		

Crossrefs

Programs

  • Maple
    S:= {2}: count:= 1:
    for n from 3 by 2 while count < 100 do
      F:= ifactors(n)[2];
      if max(map(t -> t[2],F))=1 and {seq(numtheory:-pi(t[1]),t=F)} subset S then
         S:= S union {n}; count:= count+1;
      fi
    od:
    sort(convert(S,list)); # Robert Israel, Mar 22 2019
  • Mathematica
    aQ[n_]:=Switch[n,1,False,2,True,?(!SquareFreeQ[#]&),False,,And@@Cases[FactorInteger[n],{p_,k_}:>aQ[PrimePi[p]]]];
    Select[Range[1000],aQ]

A358458 Numbers k such that the k-th standard ordered rooted tree is weakly transitive (counted by A358454).

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 14, 15, 16, 18, 22, 23, 24, 25, 27, 28, 30, 31, 32, 36, 38, 39, 42, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 70, 71, 72, 76, 78, 79, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 99, 100, 102, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be weakly transitive if every branch of a branch of the root is itself a branch of the root.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding ordered trees begin:
   1: o
   2: (o)
   4: (oo)
   6: ((o)o)
   7: (o(o))
   8: (ooo)
  12: ((o)oo)
  14: (o(o)o)
  15: (oo(o))
  16: (oooo)
  18: ((oo)o)
  22: ((o)(o)o)
  23: ((o)o(o))
  24: ((o)ooo)
		

Crossrefs

The unordered version is A290822, counted by A290689.
These trees are counted by A358454.
The directed version is A358457, counted by A358453.
A000108 counts ordered rooted trees, unordered A000081.
A306844 counts anti-transitive rooted trees.
A324766 ranks recursively anti-transitive rooted trees, counted by A324765.
A358455 counts recursively anti-transitive ordered rooted trees.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],Complement[Union@@srt[#],srt[#]]=={}&]

A358459 Numbers k such that the k-th standard ordered rooted tree is balanced (counted by A007059).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 16, 17, 32, 35, 37, 41, 43, 64, 128, 129, 137, 139, 163, 169, 171, 256, 257, 293, 512, 515, 529, 547, 553, 555, 641, 649, 651, 675, 681, 683, 1024, 1025, 2048, 2053, 2057, 2059, 2177, 2185, 2187, 2211, 2217, 2219, 2305, 2341, 2563
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2022

Keywords

Comments

An ordered tree is balanced if all leaves have the same distance from the root.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding ordered trees begin:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   8: (ooo)
   9: ((oo))
  11: ((o)(o))
  16: (oooo)
  17: ((((o))))
  32: (ooooo)
  35: ((oo)(o))
  37: (((o))((o)))
  41: ((o)(oo))
  43: ((o)(o)(o))
		

Crossrefs

These trees are counted by A007059.
The unordered version is A184155, counted by A048816.
A000108 counts ordered rooted trees, unordered A000081.
A358379 gives depth of standard ordered trees.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],SameQ@@Length/@Position[srt[#],{}]&]
Previous Showing 51-57 of 57 results.